14,553 research outputs found

    Hyper-Raman scattering from vitreous boron oxide: coherent enhancement of the boson peak

    Full text link
    Hyper-Raman scattering spectra of vitreous B2_2O3_3 are reported and compared to Raman scattering results. The main features are indexed in terms of vibrations of structural units. Particular attention is given to the low frequency boson peak which is shown to relate to out-of-plane librations of B3_3O3_3 boroxol rings and BO3_3 triangles. Its hyper-Raman strength is comparable to that of cooperative polar modes. It points to a sizeable coherent enhancement of the hyper-Raman signal compared to the Raman one. This is explained by the symmetry of the structural units.Comment: 4 pages, 3 figure

    Chemical reactivity of hydrogen, nitrogen and oxygen atoms at temperatures below 100 deg K Fifth semiannual technical report

    Get PDF
    Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 deg

    Nutrient Content of Runoff Water From Rice Fields

    Get PDF
    Current perception is that nutrient runoff from croplands is a significant contributor to poor water quality in some areas. While extensive research has been conducted to survey and ameliorate this problem for several upland crops, little work has been done to evaluate the problem with flooded rice (Oryza sativa, L.) soils. Since rice production utilizes a major portion of the total irrigation water usage for certain areas, it is important to understand the contribution of rice production to non-point source N and P in surface water. Several production fields were selected to evaluate the concentrations of nutrients in the floodwater at selected distances across the field, including inlet and exit. The fields were evaluated in either 1990, 1991, or 1992 and were managed by the individual rice producer. Water samples were collected from several locations within each field weekly following establishment of the permanent flood and analyzed for inorganic N (NH4-N, No3-N, and NO2-N) and soluble P. The N concentrations in the floodwater normally peaked following N fertilizer application but rapidly declined and remained below 1 mg N L-1. Water management resulted in some variation among locations with respect to the timing and magnitude of these peaks. The P concentrations were usually highest near the well and declined to less than 0.05 mg P L-1 as the water moved across the field. This was attributed to plant uptake, uptake by algae, and sediment deposition. The data indicates that rice fields have the potential to be utilized as a filtration system to reduce the nutrient load of irrigation water similar to constructed wetlands . Use of catfish pondwater, in comparison to well water, resulted in only slightly higher total N and total P levels with higher amounts of the nutrients in the organic form. Although the P levels were high enough to potentially contribute to eutrophication of surface water, the water exiting the field was lower than at the entry point irrespective of the source. Also, the total P (organic + inorganic) concentration was less than 0.05 mg P L- 1

    Analytic, Group-Theoretic Density Profiles for Confined, Correlated N-Body Systems

    Full text link
    Confined quantum systems involving NN identical interacting particles are to be found in many areas of physics, including condensed matter, atomic and chemical physics. A beyond-mean-field perturbation method that is applicable, in principle, to weakly, intermediate, and strongly-interacting systems has been set forth by the authors in a previous series of papers. Dimensional perturbation theory was used, and in conjunction with group theory, an analytic beyond-mean-field correlated wave function at lowest order for a system under spherical confinement with a general two-body interaction was derived. In the present paper, we use this analytic wave function to derive the corresponding lowest-order, analytic density profile and apply it to the example of a Bose-Einstein condensate.Comment: 15 pages, 2 figures, accepted by Physics Review A. This document was submitted after responding to a reviewer's comment

    Metro System of Local Government (A Survey)

    Get PDF
    Growth of many American cities into vast metropolitan communities of suburban cities, towns and villages clustered about the central city is creating complex problems of local government. Duplication of services and costs is matched by artificial compartmentalization of adjacent areas, all developing with little or no overall plan or logic.Herein, four outstanding community leaders examine the problem in terms of the situation in the Ohio area of Cuyahoga County, around the core city of Cleveland. Extracts from four speeches are set forth here, all delivered at a recent luncheon of the Cleveland-Marshall Alumni Association

    Current profiles and AC losses of a superconducting strip with elliptic cross-section in perpendicular magnetic field

    Full text link
    The case of a hard type II superconductor in the form of strip with elliptic cross-section when placed in transverse magnetic field is studied. We approach the problem in two steps, both based on the critical-state model. First we calculate numerically the penetrated current profiles that ensure complete shielding in the interior, without assuming an a priori form for the profiles. In the second step we introduce an analytical approximation that asumes that the current profiles are ellipses. Expressions linking the sample magnetization to the applied field are derived covering the whole range of applied fields. The theoretical predictions are tested by the comparison with experimental data for the imaginary part of AC susceptibility.Comment: 12 pages; 3 figure

    Importance of a sound hydrologic foundation for assessing the future of the High Plains Aquifer in Kansas

    Get PDF
    This is the published version. Copyright National Academy of SciencesSteward et al. (1) assess the hydrologic and agricultural future of the High Plains Aquifer. We have many concerns about hydrologic aspects of their study and describe the most significant here. The authors state “…the lines of recharge plus storage in Fig. 1C very closely approximate the recent data points of metered groundwater pumping….” That is not correct, as is clear from a comparison of reported pumping data (diamonds) and the authors’ calculated groundwater use (solid line) for the SW region. There is a systematic deviation (authors’ calculated use is increasing, whereas reported metered pumping data are decreasing), which persists even when uncertain pre-1990 pumping data are neglected. The authors’ groundwater use is also markedly inconsistent with common experiences in western Kansas (2). The 2020–2025 (SW) and 2025–2030 (NW) peaks in the authors’ groundwater use are simply a product of their logistic function representation (maximum use at normalized thickness of 0.5) and are in dramatic contrast to recorded pumping trends. Given that calculated groundwater use is input into the agricultural models, we question all of the agricultural projections. The authors provide no objective basis for accepting the logistic function as an accurate tool for projecting water level declines. The comparisons in their table S1 do little to substantiate the use of the function given that the authors (i) adjust two parameters per well; (ii) adjust parameters at each well independently of the other 1,600 wells; and (iii) in aggregate, only assess the first 30% of depletion. A number of alternative functions could be found that would produce similar agreement with existing data but markedly different future projections. We note the circularity of including extrapolated 2060 values in the dataset used to develop logistic curves that are then used to make future projections. The authors state “…and measurement points were added at 1930 and 2060 from a linear extrapolation of observations while keeping these points within the saturated aquifer.” We are concerned about the sensitivity of future projections to inclusion of 1930 and 2060 “measurements” and to the process (unexplained) for “keeping these points within the saturated aquifer.” The authors state that “We computed recent recharge rates to preserve conservation of mass….” That cannot be correct, as is clear from a comparison of reported pumping data (diamonds) and the authors’ calculated change in storage plus recharge (solid line) for the SW region in their figure 1C; a conservation of mass calculation would produce a line through the center of mass of the reported 1981–2009 data. The calculated recharge values appear to have been adjusted in an unexplained manner. Given that, we also question the significance of the match obtained for the groundwater-supported corn plot in their figure 3A. The comparisons in their table S3 do little to substantiate the authors’ recharge estimates because of the above concerns and the lack of consistency with more recent process-based modeling investigations (3, 4). We conclude that this is an interesting, but highly flawed, mathematical exercise that has little bearing on future conditions in the High Plains Aquifer in western Kansas

    Revised Relativistic Hydrodynamical Model for Neutron-Star Binaries

    Full text link
    We report on numerical results from a revised hydrodynamic simulation of binary neutron-star orbits near merger. We find that the correction recently identified by Flanagan significantly reduces but does not eliminate the neutron-star compression effect. Although results of the revised simulations show that the compression is reduced for a given total orbital angular momentum, the inner most stable circular orbit moves to closer separation distances. At these closer orbits significant compression and even collapse is still possible prior to merger for a sufficiently soft EOS. The reduced compression in the corrected simulation is consistent with other recent studies of rigid irrotational binaries in quasiequilibrium in which the compression effect is observed to be small. Another significant effect of this correction is that the derived binary orbital frequencies are now in closer agreement with post-Newtonian expectations.Comment: Submitted to Phys. Rev.

    Span of control in supervision of rail track work

    Get PDF
    The supervision of engineering work on the railways has received relatively little examination despite being both safety-critical in its own right and having wider implications for the successful running of the railways. The present paper is concerned with understanding the factors that make different engineering works perceived as easier or harder to manage. We describe an approach building on notions of ‘span of control’, through which we developed the TOECAP inventory (Team, Organisation, Environment, Communication, Activity and Personal). This tool was validated through both interviews and questionnaires. As well as identifying the physical factors involved, the work also emphasised the importance of collaborative and attitudinal factors. We conclude by discussing limitations of the present work and future directions for development
    corecore