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ABSTRACT 

HUTR.IENT CONTENT OF RUHOFF WATER FROM RICE FIELDS 

Current perception is that nutrient runoff from croplands is a 

significant contributor to poor water quality in some areas. While 

extensive research has been conducted to survey and ameliorate this 

problem for several upland crops, little work has been done to evaluate 

the problem with flooded rice (Ory~a sat;iva, L.) soils. Since rice 

production utilizes a major portion of the total irrigation water usage 

for certain areas, it is important to understand the contribution of rice 

production to non-point source N and P in surface water. Several 

production fields were selected to evaluate the concentrations of 

nutrients in the floodwater at selected distances across the field, 

including inlet and exit. The fields were evaluated in either 1990, 1991, 

or 1992 and were managed by the individual rice producer. Water samples 

were collected from several locations within each field weekly following 

establishment of . the permanent flood and analyzed for inorganic N (NH4-N, 

NC>J-N, and No2-N) and soluble P. The N concentrations in the floodwater 

normally peaked following N fertilizer application but rapidly declined 

and remained below 1 mg N L· 1• Water management resulted in some variation 

among locations with respect to the timing and magnitude of these peaks. 

The P concentrations were usually highest near the well and declined to 

less than 0.05 mg P L-1 as the water moved across the field. This was 

attributed to plant uptake, uptake by algae, and sediment deposition. The 

data indicates that rice fields have the potential to be utilized as a 
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filtration system to reduce the nutrient load of irrigation water similar 

to constructed wetlands. use of catfish pondwater, in comparison to well 

water, resulted in only slightly higher total N and total P levels with 

higher amounts of the nutrients in the organic form. Although the. P 

levels were high enough to potentially contribute to eutrophication of 

surface water, the water exiting the field was lower than at the entry 

point irrespective of the source. Also, the total P (organic + inorganic) 

concentration was less than 0.05 mg P L-1. 
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:INTRODUCTION 

A. Purpose and Obiectives 

Recently the concern about environmental pollution resulting from 

application of commercial fertilizers and pesticides in agricultural 

situations has increased. Because of this concern, it becomes 

increasingly important to know how much contamination of surf ace water 

resulting from these applications is actually present. Because 

information concerning N and P runoff from rice fields is limited, this 

study was initiated to evaluate the seasonal variation in nutrient 

contents in the rice floodwater with distance across the field. 

B. Related Research and Activities 

Nitrogen and P in runoff from agricultural lands have been 

investigated extensively, particularly for upland crop situations 

(Stanford et al., 1970; Water Resources Committee, 1970; Lin, 1972; Loehr, 

1974; Chichester and Richardson; 1992). some of the major topics of 

recent research include N and P runoff as influenced by tillage practices, 

irrigation, and various cropping situations (e.g., Sharpley et al., 1992; 

Lowrance, 1992; Chichester and Richardson, 1992). Most of the research 

has focused on upland crops such as corn (Zea mays, L.), wheat (~riticwn 

aestivwn, L.) and soybean (Glycine maz, (L.) Merr.). However, research 

evaluating the runoff from rice production is limited. 

The use of riparian forests for filtering nutrient runoff from crop 

production fields has demonstrated the ability to reduce nutrients 

entering the surrounding watersheds (Cooper et al., 1986; Jordon et al., 
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1993; Lowrance et al., 1984a,b; Peterjohn and Correll, 1984, 1986; Jacobs 

and Gilliam, 1985; Haycock and Pinay, 1993). The riparian forests take up 

N, P, and other nutrients, thus reducing the loads in the runoff water. 

Similarly, wetland ecosystems act as a filter for nutrients contained in 

water moving through the system, particularly N and P (Boyt et al., 1977; 

Lakshman, 1979; Reddy and DeBusk, 1985; Tilton and Kadlec, 1979). The 

mechanisms for filtration include plant uptake, incorporation into the 

soil, and gaseous losses resulting from the reduced soil conditions 

associated with wetlands. Gaseous losses of N include nitrification -

denitrification reactions (Patrick and Reddy, 1976; Reddy et al., 1980; 

Reddy and Patrick, 1986) and NH3 volatilization (Mikkelsen and De Datta, 

1979; Brandon and Wells, 1986; Welle and Turner, 1984). It is believed 

that rice fields can act as a filtration system similar to the constructed 

wetlands because of the vegetation and flooded soils associated with rice 

production. 

Certain metals contained in irrigation well water, particularly Ca 

and Mg, are deposited due to the formation of carbonate precipitates when 

exposed to co2 (Gilmour et al., 1978). Due to this precipitation, the 

concentration in the floodwater usually decreases with increasing distance 

from the well. The result is the accumulation of calcium and magnesium 

carbonates in the soil which leads to increased soil pH. Subsequently, 

the potential for Zn deficiency exists during rice production. Data 

concerning the movement of other metals across the field is limited. 

The majority of the irrigation water utilized in the rice-producing 

region of the Southern U.S. is used for the rice crop. consequently, 

nutrient runoff from rice fields is a major concern in this region. 
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MATERIALS AND PROCEDURES 

seven production rice fields were selected to monitor the N and P 

concentrations of the floodwater during the 1990, 1991, and 1992 growing 

seasons (one field in 1990, three fields in 1991, and three fields in 

1992). The fields were located in Ashley, Drew, Lincoln, and St. Francis 

counties in Arkansas. Each field was managed by the producer, including 

cultivar selection. The rice was seeded on each field and grown as an 

upland crop for 4-6 wk. At the four- to five-leaf growth stage, 60% of 

the recommended fertilizer N was applied as urea and a permanent flood was 

established and maintained until maturity. Fertilizer N was applied to 

each field as urea at rates appropriate for the particular cultivar. The 

N was applied in three applications with 60\ of the N applied just prior 

to flooding, 20% applied at 1.3-cm internode elongation (IE), and 20% 10 

d following IE. The fields are designated in the discussion according to 

the producer's name and year. 

Water samples from each field were taken weekly for the entire 

season at seven locations across the field from entry point to exit 

including tailwater. Samples were collected daily for the first wk 

following N fertilizer applications. Water samples were collected with a 

60-ml syringe and filtered on location through a 0.45-um membrane filter. 

The electrical conductivity (EC), pH, and temperature of the floodwater 

was measured in situ at the time of sampling with a portable EC meter and 

a portable pH meter. The metal samples were acidified with one drop of 

concentrated HNO;s for preservation until analysis was performed. The water 

samples were analyzed for soluble P ( Po4 •
3) and inorganic N ( NH4 + -N, NO;s • -N, 
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and NOz" -N) with a Technicon AutoAnalyzer II (Technicon Industrial Systems, 

1973a,b, 1976a). Metals (Ca, Mg, K, Na, Fe, Mn, Al, As, Cu, co, Cd, Cr, 

Zn, and Pb) were determined by inductively coupled atomic plasma 

spectroscopy (Soltanpour et al., 1982). 

An additional study was conducted during 1991 and 1992 to compare 

the nutrient content of runoff water from different irrigation water 

sources. Two fields were either irrigated with well water or with water 

pumped from a pond used for raising catfish. Samples were collected from 

the field as described above. In addition to the analyses described for 

the other fields, unfiltered water samples were collected to analyze for 

total dissolved P and total dissolved N. Total N and P were determined 

with a Technicon AutoAnalyzer II (Technicon Industrial Systems, 1976b). 

PRINCIPLE FINDINGS AND SIGNIFICANCE 

A. Inorganic N 

The major peaks in the seasonal N concentrations in the floodwater 

were following N fertilizer applications (Fig. 1 and 2, respectively). As 

would be expected this N peak was usually NH4-N (Fig. l}. The N~-N 

r emained low throughout the season (less than 1 mg N L"1 ) except for two 

locations (Fig. 2). In 1991, the M&J farm site and the Reinhart farm site 

in 1992 had an initially high N~-N due to the time between N fertilization 

and application of the flood. The fields required 3 d to be completely 

flooded. Consequently, the lower end of the field resulted in greater 

nitrification and, thus, N~-N accumulation (>2.5 mg L01 ). The N~-N peak 

declined to less than 0.5 mg L"1 for both of these locations within 10 d 
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following establishment of the flood. Most of the peaks observed during 

mid-season had fallen to below 1 mg NH4-N L01 within 3 d. This is 

consistent with previous research indicating that mid-season N fertilizer 

applications are utilized by the plant, incorporated into the soil 

biomass, or lost within 3 dafter application (Wilson et al., 1989). 

The NH4-N concentration varied with flow distance and location (Fig. 

3) • The NH4-N concentration at the Summerford location remained below 0. 5 

mg L01 during 1991 although the NH4-N concentration exiting the field was 

greater than the NH4-N concentration entering the field at the other two 

locations in 1991 and the Pine Tree location in 1990. The Bradshaw and 

Reinhart locations remained relatively constant across the field during 

1992. The Fischer location increased across the first 50% of the field 

from 0.2 to 1.8 mg N L"1 but decreased to 1.1 mg NH4-N L"1 at the outlet. 

Much of the variation between locations can be attributed to differences 

in water management by the individual producers. The producers ability to 

flood and/or drain the field differed primarily due to differences in soil 

texture, field size, and well capacity. 

The N~-N concentration in the floodwater with respect to distance 

from the inflow also varied among locations (Fig. 4). At most of the 

locations, the N~-N concentration remained constant at a level below 0.5 

mg N~-N L"1• However, at Reinhart in 1992 and M&J in 1991, the nitrate 

levels changed with distance. At these two locations, N~-N increased to 

levels of 1.5 mg N~-N L"1 or more. This change in N~-N concentration can 

be attributed to wetting and drying cycles associated with the inability 

to apply the flood to the entire field rapidly or to maintain the flood 

permanently once it was established. 
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The N concentrations reacted much as expected. The concentrations 

were high immediately after N application but rapidly declined to levels 

below that which is considered to pose a threat to surrounding watersheds. 

For most of the season, the N concentrations remained below l mg N L-1 as 

previously reported for rice fields (Moore et al., 1981). 

It is important to note the variability in the N concentration in 

the floodwater among the locations. These differences are associated with 

water management which is crucial for maximum efficiency of the fertilizer 

N (Wells et al., 1988). If the early N application is made into the 

floodwater, the amount of NH4-N in the floodwater increases, NH3 

volatilization losses increase (Fillery et al., 1986), and, with an 

increase in NH4-N or NOJ-N in the floodwater, the potential for increased 

pollution exists (Moore et al., 1993). The optimum N management 

techniques are to apply the early N onto dry soil just prior to flooding 

and then establish a permanent flood as rapidly as possible (Brandon and 

Wells, 1986; Moore et al., 1993; Wells and Turner, 1984). This technique 

utilizes the floodwater to incorporate the N into the soil (Fillery et 

al., 1984; Wells and Turner, 1984) which reduces the buildup of Nin the 

floodwater. This method of applying the early N fertilizer has also shown 

to increase yields and reduce NH3 volatilization losses (Wells et al., 

1988). By utilizing good water management, N0:5-N formation is reduced, 

less N accumulates in the floodwater, and less potential for N in runoff 

water exists (Fig. 2 and 4). However, when poor water management is used 

(i.e. M&J farms - 1991, Reinhart farms - 1992) more nitrification occurs 

which results in greater denitrification losses and potentially greater 

NOJ-N released into the surrounding surface water. 
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B. Soluble P 

The soluble reactive phosphorus (SRP) decreased with increased 

distance across the field in all fields except for Bradshaw-1992 (Fig. 5). 

The SRP increased initially at this site but decreased as the water moved 

across the field (Fig. Sa). The SRP in all of the fields was less than 

0.05 mg P L" 1 at the end of the field, the level established as the minimum 

level upon which eutrophication of surface water is possible (Sharpley et 

al., 1992; Sharpley and Smith, 1993). The Summerford site contained the 

highest initial SRP level at 0.5 mg P L" 1• However, this level dropped to 

approximately 0.15 mg P L" 1 and remained relatively constant through the 

field. Although the level at this site was above the limits recognized as 

stimulating eutrophication of surface waters (10 ug L"1 ) (Sharpley and 

Smith, 1993), the irrigation water contained less SRP at the outlet than 

the water entering the field from the well. Consequently, the water 

quality improved as a result of moving across the field. 

For most locations, the SRP concentration in the well water was 

above that which is considered to cause eutrophication of surface water 

(Fig. 5). However, as the water progressed across the field, the SRP 

concentration declined. For the Summerford location, the SRP declined 

from 0.5 mg L" 1 to approximately 0.09 mg L" 1 within half the distance of 

the field (Fig. Sa). The SRP measured at Reinhart-1992 declined from 0.15 

mg L" 1 entering the field to as little as 0.02 mg L"1 within 50% of the 

flow distance (Fig. Sb). Two conclusions can be obtained from these data. 

First, the inherent level of soluble P in irrigation entering rice fields 

is variable (0.01 to O.S mg L"1). Secondly, rice fields can potentially 

act as a filter for P similar to the constructed wetland ecosystems (Boyt 
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et al., 1977; Lakshman, 1979; Reddy and DeBusk, 1985). 

The seasonal concentration of soluble P in the floodwater was 

variable (Fig. 6). The peaks and valleys are a reflection of when the 

field was irrigated, particularly for Sununerford farms in 1991. The well 

at this particular field was inherently high in soluble P as denoted by 

the P concentration with distance across the field (Fig. Sb). When water 

was being applied to the field, the soluble P concentration was relatively 

high. After the field was flooded and the flood stabilized, the soluble 

P concentration declined. When water was added to the field because of 

evaporation, transpiration, runoff, and plant utilization, the amount of 

P in the water increased. 

The P concentrations were typically higher at the well than other 

locations across the field. As the water flowed across the field, the 

concentration of P generally decreased to less than a.as mg P L"1 • The pH 

of the incoming water was normally close to 7 (data not shown), due to a 

high C02 partial pressure. As the water moves across the field, the co2 

degasses resulting in CaCO] precipitation and P04 ·
3 co-precipitation or 

calcium phosphate precipitation (Gilmour et al. , 1978) • consequently, the 

P in the floodwater was reduced. Also, P uptake and utilization by algae, 

rice plants, and any other vegetation could also have contributed to the 

reduction in P concentrations as the water moved across the field 

(Sharpley et al., 1992; Sharpley and Smith, 1993). Although the soluble 

P concentrations were generally in excess of the limits recognized as 

stimulating accelerated eutrophication of surface waters (0.01 mg P L"1), 

they were significantly reduced from the concentration upon entering the 

field. 



C. Metals 

As expected, the ca concentrations decreased or remained the same as 

the floodwater moved across the field (Table 1). The ca concentrations 

ranged from 11 to 78 mg L. 1 entering the field and ranged from 11 to 54 mg 

L-1 exiting the field. The summary presented in Table 1 also indicates the 

Mg was relatively low but did not change appreciably between the inlet and 

exit points. 

As expected the Fe and Mn concentrations were relatively high at 

some locations (Table 1). Although most locations resulted in a decrease 

in the concentration as the water moved across the field, some locations 

actually increased. The Fe concentrations ranged from 10 to 2404 ug L-1 

entering the field and ranged from 90 to 410 ug L-1 • The Mn ranged from 

3 to 195 ug L-1 entering the field and ranged from 8 to 1745 ug L· 1 exiting 

the field. 

Due to the changes associated with soil reduction following 

flooding, Fe and Mn generally become more soluble. Consequently, it is 

feasible that an increase in the Fe and Mn concentrations would result. 

If water management for the rice crop is not optimum, it is also possible 

that the reduction necessary to solubilize an appreciable amount of Fe and 

Mn may not occur. subsequently, Fe and Mn may be deposited in the fields 

as the water moves across the field because of the oxidized soil 

conditions. At the Summerford site, the well water contained a large 

amount of Fe (2404 ug L-1) relative to the other locations. Poor water 

management leads to reduced N efficiency due to wetting and drying cycles 

The wetting and drying cycles at this site resulted in, in addition to the 

poor N efficiency (Fig. 1), a significant amount of Fe precipitation due 
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0 Table 1 . Comparison of inlet and outlet metal concentrations in the 

floodwater of four production rice fields. 

c Bradshaw Reinhart Fischer Summerford 
Metal 

c In Out In out In Out In Out 

mg L.1 

c ca 41 36 11 11 78 54 45 24 

K 1 2 1 2 5 8 2 5 

0 
Mg 8 7 2 2 17 16 10 11 

Na 13 12 11 10 29 46 28 28 

s 3 3 1 1 * * * * c ug L ·1 

Al 0 63 62 255 0 0 0 73 

g As 0 0 137 108 0 0 0 0 

B 26 29 11 11 94 63 69 76 

0 Cd 40 3 0 0 0 0 0 0 

co 9 6 0 0 0 0 0 0 

[ er 0 0 0 0 0 0 0 0 

cu 0 0 0 0 0 0 0 5 

c Fe 150 90 716 324 10 410 2404 229 

Mn 183 31 71 8 3 1745 195 106 

D Ni 0 0 0 0 0 0 0 0 

Pb * * * * 0 0 0 0 

[ Zn 168 128 289 330 84 187 118 101 

pH 6.75 7.69 6.34 8.09 7.15 6.96 6.65 7.43 

[ 
* = not determined 

c 
u 16 

c 



o. Comparison of Water sources 

Water from ponds is used to raise catfish is used in some areas of 

the rice producing region of the Southern U.S. In fact, rice is also 

grown in rotation with catfish on some farms. When the nutrient load of 

water from catfish ponds was compared to irrigation from well water, the 

total N concentration was very similar between the two sources (Fig. 7). 

The NO]-N concentration was very small for both sources. 

concentration was higher in the pondwater field than in the well water 

field. Thus, more of the N in the well water field consisted of organic 

N. However, both sites had less than 3 mg N L"1 of total N exiting the 

field in the runoff with less than 0.5 mg N L"1 difference between the two 

sites. 

The total P content declined from as much as 0 .1 mg P L · 1 to slightly 

more than 0.04 mg P L"1 as the water moved across the field from the 

catfish pond (Fig. 8). However, the well water exiting the field contained 

less than 0.04 mg P L"1• More of the P in the catfish pond was in the 

organic form (total - inorganic) than in the well water. However, as the 

water moved across the field, the concentration of the water exiting the 

field was very similar for the two locations with about 50 \ of the total 

P in the P04-P form. 

This data confirms the data from the other locations concerning the 

decline in P and N concentration as rice irrigation water flows across the 

field. The total P and organic P in all of the fields was less than 0.05 

mg P L"1 at the end of the field but is higher than the critical limits 

(0.01 and 0.02 mg P L"1 of soluble and total P, respectively) established 

as contributing to accelerated eutrophication of surface water (Sharpley 
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et al., 1992; Sharpley and Smith, 1993). The water exiting the field 

irrigated by pondwater contained slightly higher concentrations of organic 

P than the field irrigated by well water, indicating that the contribution 

to surface water eutrophication is more likely used catfish pondwater for 

irrigation water. However, the amount of P in the water declined 

significantly by flowing across the rice field. Had the water been 

released directly from the catfish ponds, the level would have exceeded 

four times the critical limit for total P. Consequently, the idea was 

confirmed that rice fields can act similarly to constructed wetlands 

(Lakshman, 1979) and filter nutrients before entering surface water. 

CONCLUSIONS 

Since rice production utilizes a major portion of the irrigation 

water in the Southern Rice Belt, it is necessary to understand the 

potential for pollution resulting from field runoff. The results of this 

study emphasize the importance of water management with respect to N 

concentrations in the floodwater. The N~-N levels remained low when 

optimum water management was utilized. The soluble P concentrations were 

generally lower in the water exiting the field than in the water entering 

the field from the well. Although the P levels were sufficient at some 

locations to potentially contribute to eutrophication of surrounding 

surface waters, the amount of P was generally higher entering the field 

than exiting the field. Removal of Fe and Mn apparently depends upon 

water management and the oxidation state of the soil. 
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