22 research outputs found

    Conservation threats and future prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity

    Get PDF
    Freshwater fish communities in Ecuador exhibit some of the highest levels of diversity and endemism in the Neotropics. Unfortunately, aquatic ecosystems in the country are under serious threat and conditions are deteriorating. In 2018–19, the government of Ecuador sponsored a series of workshops to examine the conservation status of Ecuador''s freshwater fishes. Concerns were identified for 35 species, most of which are native to the Amazon region, and overfishing of Amazonian pimelodid catfishes emerged as a major issue. However, much of the information needed to make decisions across fish groups and regions was not available, hindering the process and highlighting the need for a review of the conservation threats to Ecuador''s freshwater fishes. Here, we review how the physical alteration of rivers, deforestation, wetland and floodplain degradation, agricultural and urban water pollution, mining, oil extraction, dams, overfishing, introduced species and climate change are affecting freshwater fishes in Ecuador. Although many of these factors affect fishes throughout the Neotropics, the lack of data on Ecuadorian fish communities is staggering and highlights the urgent need for more research. We also make recommendations, including the need for proper enforcement of existing environmental laws, restoration of degraded aquatic ecosystems, establishment of a national monitoring system for freshwater ecosystems, investment in research to fill gaps in knowledge, and encouragement of public engagement in citizen science and conservation efforts. Freshwater fishes are an important component of the cultural and biological legacy of the Ecuadorian people. Conserving them for future generations is critical. © 2021 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles

    Low-frequency deep brain stimulation reveals resonant beta-band evoked oscillations in the pallidum of Parkinson’s Disease patients

    Get PDF
    IntroductionEvidence suggests that spontaneous beta band (11–35 Hz) oscillations in the basal ganglia thalamocortical (BGTC) circuit are linked to Parkinson’s disease (PD) pathophysiology. Previous studies on neural responses in the motor cortex evoked by electrical stimulation in the subthalamic nucleus have suggested that circuit resonance may underlie the generation of spontaneous and stimulation-evoked beta oscillations in PD. Whether these stimulation-evoked, resonant oscillations are present across PD patients in the internal segment of the globus pallidus (GPi), a primary output nucleus in the BGTC circuit, is yet to be determined.MethodsWe characterized spontaneous and stimulation-evoked local field potentials (LFPs) in the GPi of four PD patients (five hemispheres) using deep brain stimulation (DBS) leads externalized after DBS implantation surgery.ResultsOur analyses show that low-frequency (2–4 Hz) stimulation in the GPi evoked long-latency (>50 ms) beta-band neural responses in the GPi in 4/5 hemispheres. We demonstrated that neural sources generating both stimulation-evoked and spontaneous beta oscillations were correlated in their frequency content and spatial localization.DiscussionOur results support the hypothesis that the same neuronal population and resonance phenomenon in the BGTC circuit generates both spontaneous and evoked pallidal beta oscillations. These data also support the development of closed-loop control systems that modulate the GPi spontaneous oscillations across PD patients using beta band stimulation-evoked responses

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    Data_Sheet_1_Low-frequency deep brain stimulation reveals resonant beta-band evoked oscillations in the pallidum of Parkinson’s Disease patients.pdf

    No full text
    IntroductionEvidence suggests that spontaneous beta band (11–35 Hz) oscillations in the basal ganglia thalamocortical (BGTC) circuit are linked to Parkinson’s disease (PD) pathophysiology. Previous studies on neural responses in the motor cortex evoked by electrical stimulation in the subthalamic nucleus have suggested that circuit resonance may underlie the generation of spontaneous and stimulation-evoked beta oscillations in PD. Whether these stimulation-evoked, resonant oscillations are present across PD patients in the internal segment of the globus pallidus (GPi), a primary output nucleus in the BGTC circuit, is yet to be determined.MethodsWe characterized spontaneous and stimulation-evoked local field potentials (LFPs) in the GPi of four PD patients (five hemispheres) using deep brain stimulation (DBS) leads externalized after DBS implantation surgery.ResultsOur analyses show that low-frequency (2–4 Hz) stimulation in the GPi evoked long-latency (>50 ms) beta-band neural responses in the GPi in 4/5 hemispheres. We demonstrated that neural sources generating both stimulation-evoked and spontaneous beta oscillations were correlated in their frequency content and spatial localization.DiscussionOur results support the hypothesis that the same neuronal population and resonance phenomenon in the BGTC circuit generates both spontaneous and evoked pallidal beta oscillations. These data also support the development of closed-loop control systems that modulate the GPi spontaneous oscillations across PD patients using beta band stimulation-evoked responses.</p
    corecore