64 research outputs found

    Resistin: A reappraisal

    Get PDF
    Abstract From a biological point of view, aging can be considered a progressive inability of an organism to react to stress, maintain homeostasis, and survive unfavourable changes during post-maturational life. The expression of several adipokines changes during aging and for some changes, a role in the onset of chronic disease and frailty has been proposed. Among adipokines, resistin was shown in recent studies to play a key role in aging. Resistin is a small secreted protein that regulates glucose metabolism in mammalians. High resistin levels induce insulin resistance and exert proinflammatory effects. Consistently, resistin has been shown to play a pivotal role in various metabolic, inflammatory, and autoimmune diseases. Herein, the role of resistin as a molecular link between aging and age-related conditions was reviewed and the clinical implications of this knowledge discussed

    Electronic and phononic states of the Holstein-Hubbard dimer of variable length

    Full text link
    We consider a model Hamiltonian for a dimer including all the electronic one- and two-body terms consistent with a single orbital per site, a free Einstein phonon term, and an electron-phonon coupling of the Holstein type. The bare electronic interaction parameters were evaluated in terms of Wannier functions built from Gaussian atomic orbitals. An effective polaronic Hamiltonian was obtained by an unrestricted displaced-oscillator transformation, followed by evaluation of the phononic terms over a squeezed-phonon variational wave function. For the cases of quarter-filled and half-filled orbital, and over a range of dimer length values, the ground state was identified by simultaneously and independently optimizing the orbital shape, the phonon displacement and the squeezing effect strength. As the dimer length varies, we generally find discontinuous changes of both electronic and phononic states, accompanied by an appreciable renormalization of the effective electronic interactions across the transitions, due to the equilibrium shape of the wave functions strongly depending on the phononic regime and on the type of ground state.Comment: 11 pages, RevTeX, 10 PostScript figures; to appear in Phys. Rev.

    Exact ground states for the four-electron problem in a two-dimensional finite Hubbard square system

    Full text link
    We present exact explicit analytical results describing the exact ground state of four electrons in a two dimensional square Hubbard cluster containing 16 sites taken with periodic boundary conditions. The presented procedure, which works for arbitrary even particle number and lattice sites, is based on explicitly given symmetry adapted base vectors constructed in r-space. The Hamiltonian acting on these states generates a closed system of 85 linear equations providing by its minimum eigenvalue the exact ground state of the system. The presented results, described with the aim to generate further creative developments, not only show how the ground state can be exactly obtained and what kind of contributions enter in its construction, but emphasize further characteristics of the spectrum. On this line i) possible explications are found regarding why weak coupling expansions often provide a good approximation for the Hubbard model at intermediate couplings, or ii) explicitly given low lying energy states of the kinetic energy, avoiding double occupancy, suggest new roots for pairing mechanism attracting decrease in the kinetic energy, as emphasized by kinetic energy driven superconductivity theories.Comment: 37 pages, 18 figure

    Electronic states, Mott localization, electron-lattice coupling, and dimerization for correlated one-dimensional systems. II

    Full text link
    We discuss physical properties of strongly correlated electron states for a linear chain obtained with the help of the recently proposed new method combining the exact diagonalization in the Fock space with an ab initio readjustment of the single-particle orbitals in the correlated state. The method extends the current discussion of the correlated states since the properties are obtained with varying lattice spacing. The finite system of N atoms evolves with the increasing interatomic distance from a Fermi-liquid-like state into the Mott insulator. The criteria of the localization are discussed in detail since the results are already convergent for N>=8. During this process the Fermi-Dirac distribution gets smeared out, the effective band mass increases by ~50%, and the spin-spin correlation functions reduce to those for the Heisenberg antiferromagnet. Values of the microscopic parameters such as the hopping and the kinetic-exchange integrals, as well as the magnitude of both intra- and inter-atomic Coulomb and exchange interactions are calculated. We also determine the values of various local electron-lattice couplings and show that they are comparable to the kinetic exchange contribution in the strong-correlation limit. The magnitudes of the dimerization and the zero-point motion are also discussed. Our results provide a canonical example of a tractable strongly correlated system with a precise, first-principle description as a function of interatomic distance of a model system involving all hopping integrals, all pair-site interactions, and the exact one-band Wannier functions.Comment: 18 pages, REVTEX, submitted to Phys. Rev.

    The boson-fermion model with on-site Coulomb repulsion between fermions

    Full text link
    The boson-fermion model, describing a mixture of itinerant electrons hybridizing with tightly bound electron pairs represented as hard-core bosons, is here generalized with the inclusion of a term describing on-site Coulomb repulsion between fermions with opposite spins. Within the general framework of the Dynamical Mean-Field Theory, it is shown that around the symmetric limit of the model this interaction strongly competes with the local boson-fermion exchange mechanism, smoothly driving the system from a pseudogap phase with poor conducting properties to a metallic regime characterized by a substantial reduction of the fermionic density. On the other hand, if one starts from correlated fermions described in terms of the one-band Hubbard model, the introduction in the half-filled insulating phase of a coupling with hard-core bosons leads to the disappearance of the correlation gap, with a consequent smooth crossover to a metallic state.Comment: 7 pages, 6 included figures, to appear in Phys. Rev.

    Isotope Effect in the Presence of Magnetic and Nonmagnetic Impurities

    Full text link
    The effect of impurities on the isotope coefficient is studied theoretically in the framework of Abrikosov-Gor'kov approach generalized to account for both potential and spin-flip scattering in anisotropic superconductors. An expression for the isotope coefficient as a function of the critical temperature is obtained for a superconductor with an arbitrary contribution of spin-flip processes to the total scattering rate and an arbitrary degree of anisotropy of the superconducting order parameter, ranging from isotropic s-wave to d-wave and including anisotropic s-wave and mixed (s+d)-wave as particular cases. It is found that both magnetic and nonmagnetic impurities enhance the isotope coefficient, the enhancement due to magnetic impurities being generally greater than that due to nonmagnetic impurities. From the analysis of the experimental results on La-Sr-Cu-M-O high temperature superconductor, it is concluded that the symmetry of the pairing state in this system differs from a pure d-wave.Comment: 4 pages, 3 figure

    Quantum Monte Carlo and variational approaches to the Holstein model

    Full text link
    Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort. A principal component representation of the phonon degrees of freedom allows to sample completely uncorrelated phonon configurations. The combination of these elements enables us to perform efficient simulations for a wide range of temperature, phonon frequency and electron-phonon coupling on clusters large enough to avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the many-electron case. In the one-electron case considered here, the physics of the Holstein model can be described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte

    Marine mammal hotspots across the circumpolar Arctic

    Get PDF
    Aim: Identify hotspots and areas of high species richness for Arctic marine mammals. Location: Circumpolar Arctic. Methods: A total of 2115 biologging devices were deployed on marine mammals from 13 species in the Arctic from 2005 to 2019. Getis-Ord Gi* hotspots were calculated based on the number of individuals in grid cells for each species and for phyloge-netic groups (nine pinnipeds, three cetaceans, all species) and areas with high spe-cies richness were identified for summer (Jun-Nov), winter (Dec-May) and the entire year. Seasonal habitat differences among species’ hotspots were investigated using Principal Component Analysis. Results: Hotspots and areas with high species richness occurred within the Arctic continental-shelf seas and within the marginal ice zone, particularly in the “Arctic gateways” of the north Atlantic and Pacific oceans. Summer hotspots were generally found further north than winter hotspots, but there were exceptions to this pattern, including bowhead whales in the Greenland-Barents Seas and species with coastal distributions in Svalbard, Norway and East Greenland. Areas with high species rich-ness generally overlapped high-density hotspots. Large regional and seasonal dif-ferences in habitat features of hotspots were found among species but also within species from different regions. Gap analysis (discrepancy between hotspots and IUCN ranges) identified species and regions where more research is required. Main conclusions: This study identified important areas (and habitat types) for Arctic marine mammals using available biotelemetry data. The results herein serve as a benchmark to measure future distributional shifts. Expanded monitoring and teleme-try studies are needed on Arctic species to understand the impacts of climate change and concomitant ecosystem changes (synergistic effects of multiple stressors). While efforts should be made to fill knowledge gaps, including regional gaps and more com-plete sex and age coverage, hotspots identified herein can inform management ef-forts to mitigate the impacts of human activities and ecological changes, including creation of protected areas
    corecore