24 research outputs found

    Biogeographical boundaries, functional group structure and diversity of rocky shore communities along the Argentinean coast

    Get PDF
    We investigate the extent to which functional structure and spatial variability of intertidal communities coincide with major biogeographical boundaries, areas where extensive compositional changes in the biota are observed over a limited geographic extension. We then investigate whether spatial variation in the biomass of functional groups, over geographic (10â€Čs km) and local (10â€Čs m) scales, could be associated to species diversity within and among these groups. Functional community structure expressed as abundance (density, cover and biomass) and composition of major functional groups was quantified through field surveys at 20 rocky intertidal shores spanning six degrees of latitude along the southwest Atlantic coast of Argentina and extending across the boundaries between the Argentinean and Magellanic Provinces. Patterns of abundance of individual functional groups were not uniformly matched with biogeographical regions. Only ephemeral algae showed an abrupt geographical discontinuity coincident with changes in biogeographic boundaries, and this was limited to the mid intertidal zone. We identified 3–4 main ‘groups’ of sites in terms of the total and relative abundance of the major functional groups, but these did not coincide with biogeographical boundaries, nor did they follow latitudinal arrangement. Thus, processes that determine the functional structure of these intertidal communities are insensitive to biogeographical boundaries. Over both geographical and local spatial scales, and for most functional groups and tidal levels, increases in species richness within the functional group was significantly associated to increased total biomass and reduced spatial variability of the group. These results suggest that species belonging to the same functional group are sufficiently uncorrelated over space (i.e. metres and site-to-site ) to stabilize patterns of biomass variability and, in this manner, provide a buffer, or “insurance”, against spatial variability in environmental conditions

    Composition changes after the "Halloween" solar proton event : the high-energy particle precipitation in the atmosphere (HEPPA) model versus MIPAS data intercomparison study

    Get PDF
    We have compared composition changes of NO, NO2, H2O2, O3, N2O, HNO3, N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the “Halloween” solar proton event (SPE) in late October 2003 at 25–0.01 hPa in the Northern Hemisphere (40–90° N) and simulations performed by the following atmospheric models: the Bremen 2-D model (B2dM) and Bremen 3-D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, Fin- ROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOy and ozone changes. We have further assessed the meteorological conditions and their implications for the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO) fields. Simulated SPE-induced ozone losses agree on average within 5% with the observations. Simulated NOy enhancements around 1 hPa, however, are typically 30% higher than indicated by the observations which are likely to be related to deficiencies in the used ionization rates, though other error sources related to the models’ atmospheric background state and/or transport schemes cannot be excluded. The analysis of the observed and modeled NOy partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO3 formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H2O2 enhancements by all models hints at an underestimation of the OH/HO2 ratio in the upper polar stratosphere during the SPE. The analysis of chlorine species perturbations has shown that the encountered differences between models and observations, particularly the underestimation of observed ClONO2 enhancements, are related to a smaller availability of ClO in the polar night region already before the SPE. In general, the intercomparison has demonstrated that differences in the meteorology and/or initial state of the atmosphere in the simulations cause a relevant variability of the model results, even on a short timescale of only a few days

    Crisis on coral reefs linked to climate change

    No full text
    Since 1982, coral reefs worldwide have been subjected to an increased frequency of the phenomenon known as coral bleaching. Bleaching involves the dramatic loss of pigmented, single-celled endosymbiotic algae that live within the gastrodermal cells of a coral host that depends on this relationship for survival. Prior to the 1980s, and as early as the 1920s when coral reef research intensified, localized bleaching events were reported and attributed to factors such as extremely low tides, hurricane damage, torrential rainstorms, freshwater runoff near reefs, or toxic algal blooms [Glynn, 1993]. However, these early occurrences have recently been overshadowed by geographically larger and more frequent bleaching events whose impact has expanded to regional and global proportions

    Productions / Operations Management

    No full text
    xi, 196 hlm.; 24,5 c

    Eastern Pacific Coral Reef Provinces, Coral Community Structure and Composition: An Overview

    Get PDF
    Advances in our knowledge of eastern tropical Pacific (ETP) coral reef biogeography and ecology during the past two decades are briefly reviewed. Fifteen ETP subregions are recognized, including mainland and island localities from the Gulf of California (Mexico) to Rapa Nui (Easter Island, Chile). Updated species lists reveal a mean increase of 4.2 new species records per locality or an overall increase of 19.2 % in species richness during the past decade. The largest increases occurred in tropical mainland Mexico, and in equatorial Costa Rica and Colombia, due mainly to continuing surveys of these under-studied areas. Newly discovered coral communities are also now known from the southern Nicaraguan coastline. To date 47 zooxanthellate scleractinian species have been recorded in the ETP, of which 33 also occur in the central/south Pacific, and 8 are presumed to be ETP endemics. Usually no more than 20–25 zooxanthellate coral species are present at any given locality, with the principal reef-building genera being Pocillopora, Porites, Pavona, and Gardineroseris. This compares with 62–163 species at four of the nearest central/south Pacific localities. Hydrocorals in the genus Millepora also occur in the ETP and are reviewed in the context of their global distributions. Coral community associates engaged in corallivory, bioerosion, and competition for space are noted for several localities. Reef framework construction in the ETP typically occurs at shallow depths (2–8 m) in sheltered habitats or at greater depths (10–30 m) in more exposed areas such as oceanic island settings with high water column light penetration. Generally, eastern Pacific reefs do not reach sea level with the development of drying reef flats, and instead experience brief periods of exposure during extreme low tides or drops in sea level during La Niña events. High rates of mortality during El Niño disturbances have occurred in many ETP equatorial areas, especially in Panama and the GalĂĄpagos Islands during the 1980s and 1990s. Remarkably, however, no loss of resident, zooxanthellate scleractinian species has occurred at these sites, and many ETP coral reefs have demonstrated significant recovery from these disturbances during the past two decades.Consejo Nacional de Ciencia y TecnologĂ­a/[108302]/CONACYT/Costa RicaConsejo Nacional de Ciencia y TecnologĂ­a/[183534]/CONACYT/Costa RicaUCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de InvestigaciĂłn en Ciencias del Mar y LimnologĂ­a (CIMAR
    corecore