179 research outputs found

    Torsional Alfven Waves in Solar Magnetic Flux Tubes of Axial Symmetry

    Full text link
    Aims: Propagation and energy transfer of torsional Alfv\'en waves in solar magnetic flux tubes of axial symmetry is studied. Methods: An analytical model of a solar magnetic flux tube of axial symmetry is developed by specifying a magnetic flux and deriving general analytical formulae for the equilibrium mass density and a gas pressure. The main advantage of this model is that it can be easily adopted to any axisymmetric magnetic structure. The model is used to simulate numerically the propagation of nonlinear Alfv\'en waves in such 2D flux tubes of axial symmetry embedded in the solar atmosphere. The waves are excited by a localized pulse in the azimuthal component of velocity and launched at the top of the solar photosphere, and they propagate through the solar chromosphere, transition region, and into the solar corona. Results: The results of our numerical simulations reveal a complex scenario of twisted magnetic field lines and flows associated with torsional Alfv\'en waves as well as energy transfer to the magnetoacoustic waves that are triggered by the Alfv\'en waves and are akin to the vertical jet flows. Alfv\'en waves experience about 5 % amplitude reflection at the transition region. Magnetic (velocity) field perturbations experience attenuation (growth) with height is agreement with analytical findings. Kinetic energy of magnetoacoustic waves consists of 25 % of the total energy of Alfv\'en waves. The energy transfer may lead to localized mass transport in the form of vertical jets, as well as to localized heating as slow magnetoacoustic waves are prone to dissipation in the inner corona.Comment: 12 pages; 12 Figures, Astron. Astrophys. (A&A); Comment : High-resolution images will be appeared with the final pape

    Ionization of hydrogen and hydrogenic ions by antiprotons

    Full text link
    Presented here is a description of the ionization of hydrogen and hydrogenic ions by antiproton-impact, based on very large scale numerical solutions of the time-dependent Schr\"odinger equation in three spatial dimensions and on analysis of the topology of the electronic eigenenergy surfaces in the plane of complex internuclear distance. Comparison is made with other theories and very recent measurements.Comment: RevTex document, 11 pages, 4 Postscript figures are available from the authors, in press Phys. Rev. Let

    Projective Hilbert space structures at exceptional points

    Full text link
    A non-Hermitian complex symmetric 2x2 matrix toy model is used to study projective Hilbert space structures in the vicinity of exceptional points (EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are Puiseux-expanded in terms of the root vectors at the EP. It is shown that the apparent contradiction between the two incompatible normalization conditions with finite and singular behavior in the EP-limit can be resolved by projectively extending the original Hilbert space. The complementary normalization conditions correspond then to two different affine charts of this enlarged projective Hilbert space. Geometric phase and phase jump behavior are analyzed and the usefulness of the phase rigidity as measure for the distance to EP configurations is demonstrated. Finally, EP-related aspects of PT-symmetrically extended Quantum Mechanics are discussed and a conjecture concerning the quantum brachistochrone problem is formulated.Comment: 20 pages; discussion extended, refs added; bug correcte

    Non-Hermitian matrix description of the PT symmetric anharmonic oscillators

    Full text link
    Schroedinger equation H \psi=E \psi with PT - symmetric differential operator H=H(x) = p^2 + a x^4 + i \beta x^3 +c x^2+i \delta x = H^*(-x) on L_2(-\infty,\infty) is re-arranged as a linear algebraic diagonalization at a>0. The proof of this non-variational construction is given. Our Taylor series form of \psi complements and completes the recent terminating solutions as obtained for certain couplings \delta at the less common negative a.Comment: 18 pages, latex, no figures, thoroughly revised (incl. title), J. Phys. A: Math. Gen., to appea

    Hydrogen atom in crossed external fields reexemined by the moment method

    Get PDF
    Recurrence relations of perturbation theory for hydrogen ground state are obtained. With their aid polarizabilities in constant perpendicular electric and magnetic fields are computed up to 80th order. The high orders asymptotic is compared with its quasiclassical estimate. For the case of arbitrary mutual orientation of external fields a general sixth order formula is given.Comment: 11 pages, LaTeX, 2 figures (eps

    Adiabatic theory of Wannier threshold laws and ionization cross sections

    Get PDF
    The Wannier threshold law for three-particle fragmentation is reviewed. By integrating the Schroedinger equation along a path where the reaction coordinate R is complex, anharmonic corrections to the simple power law are obtained. These corrections are found to be non-analytic in the energy E, in contrast to the expected analytic dependence upon E

    From Heisenberg matrix mechanics to EBK quantization: theory and first applications

    Full text link
    Despite the seminal connection between classical multiply-periodic motion and Heisenberg matrix mechanics and the massive amount of work done on the associated problem of semiclassical (EBK) quantization of bound states, we show that there are, nevertheless, a number of previously unexploited aspects of this relationship that bear on the quantum-classical correspondence. In particular, we emphasize a quantum variational principle that implies the classical variational principle for invariant tori. We also expose the more indirect connection between commutation relations and quantization of action variables. With the help of several standard models with one or two degrees of freedom, we then illustrate how the methods of Heisenberg matrix mechanics described in this paper may be used to obtain quantum solutions with a modest increase in effort compared to semiclassical calculations. We also describe and apply a method for obtaining leading quantum corrections to EBK results. Finally, we suggest several new or modified applications of EBK quantization.Comment: 37 pages including 3 poscript figures, submitted to Phys. Rev.

    Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge

    Get PDF
    We define the {\it rest-frame instant form} of tetrad gravity restricted to Christodoulou-Klainermann spacetimes. After a study of the Hamiltonian group of gauge transformations generated by the 14 first class constraints of the theory, we define and solve the multitemporal equations associated with the rotation and space diffeomorphism constraints, finding how the cotriads and their momenta depend on the corresponding gauge variables. This allows to find quasi-Shanmugadhasan canonical transformation to the class of 3-orthogonal gauges and to find the Dirac observables for superspace in these gauges. The construction of the explicit form of the transformation and of the solution of the rotation and supermomentum constraints is reduced to solve a system of elliptic linear and quasi-linear partial differential equations. We then show that the superhamiltonian constraint becomes the Lichnerowicz equation for the conformal factor of the 3-metric and that the last gauge variable is the momentum conjugated to the conformal factor. The gauge transformations generated by the superhamiltonian constraint perform the transitions among the allowed foliations of spacetime, so that the theory is independent from its 3+1 splittings. In the special 3-orthogonal gauge defined by the vanishing of the conformal factor momentum we determine the final Dirac observables for the gravitational field even if we are not able to solve the Lichnerowicz equation. The final Hamiltonian is the weak ADM energy restricted to this completely fixed gauge.Comment: RevTeX file, 141 page
    • …
    corecore