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The Wannier threshold law for three-particle fragmentation is re- 
viewed. By integrating the Schrodinger equation along a path where 
the reaction coordinate R is complex, anharmonic corrections to the 
simple power law are obtained. These corrections are found to be 
non-analytic in the energy E ,  in contrast to the expected analytic de- 
pendence upon E. 

I. INTRODUCTION 

The collective motion of charged particles is fundamental to atomic physics. 
One of the most striking manifestations of this motion is the Wannier thresh- 
old law (1-8) which states that the cross section for the break up of three 
charged particles, where not all particles have the same sign of the charge, is 
proportional to ( E  - I)cw where <w is some non-integral index. For fragmen- 
tation into two electrons and a proton, this index equals 1.1269, as discovered 
by Wannier in his seminal paper on the subject. Wannier used a judicious 
combination of quantum and classical mechanics to obtain this result. One 
of the great challanges posed by this work, and one that intensely interested 
Chris Bottcher, was to fit this result into standard theories of atomic structure 
and dynamics (9). Progress in this direction has been incremental. Rau (2) 
and also Peterkop (3) were able to give a completly quantal derivation of this 
law, a first step towards building a general theory. The experiments of Lube11 
and coworkers (10) and their interpretation by Greene and Rau (11) showed 
that one must also include final breakup configurations with non-zero angular 
momentum L and total spin S. The Rau-Peterkop theory was extended to 
arbitrary threeparticle systems, (4,7) but none of these methods indicated 
how to compute the fragmentation cross section on an ab intio basis. In this 
respect the work of Crothers (12) is a notable exception. He modified the 
Peterkop wave function and used it to evaluate the fragmentation matrix el- 
ement. The calculation was carried out for electron impact on atomic helium 
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and good agreement with the data for E - I < 2eV was obtained. In many 
respects this was a definitive result. It showed how to obtain a cross section 
of the Wannier form with a non-analytic coefficient ( E  - 1)CW multiplying 
an analytic function of energy E with no adjustable parameters. Because the 
final state wave function is assumed to be of the Peterkop form, this calcula- 
tion could not settle the question of whether some other form might actually 
emerge in a complete solution of the Schrodinger equation for this problem. 
To obtain some insights on this fundamental question Chris and others turned 
to a model problem of three charged particles moving in one dimension (9). 
Chris was able to compute the cross section and electron energy distribu- 
tions for this model using a semiclassical Green’s function for a system with 
two non-separable coordinates. He found that the Wannier threshold law 
did indeed obtain but that there were some small departures from Wannier’s 
theory in the energy distribution of the two electrons. These results encour- 
aged Chris to extend the analytical-numerial methods to the real problem 
of three-particle motion in three dimensions. It was at this point that my 
close interaction with Chris on this subject began. My own work emphasized 
the time-dependent propagator for three particles (13,14) and Chris was very 
much interested in the connections between the two representations. 

At about this time Chris organized a workshop at the Santa-Barbara In- 
stitute for Theoretical Physics on the subject of time-dependent phenomena. 
It was my good fortune to spend three weeks at this workshop where Chris 
revealed a talent that he had kept well hidden, namely, he was an excellent 
scientific administrator! His open attitude and penetrating intellect were just 
the right combination to stimulate enthusiasm for the subject of the work- 
shop and to direct it along fruitful lines. One direction is represented by cross 
sections for ionization of atomic hydrogen by incident protons, since time- 
dependent methods are the normal way to study ion-atom collisions. At the 
same time, the probabilty for ionization at threshold goes according to the gen- 
eral ”Wannier” theory of Feagin (7). Ab. initio calculations by Ovchinnikov 
and Solov’ev (15) using methods appropriate for heavy ion impact give results 
that relate closely to the Wannier threshold law. Of particular importance 
is their analysis of the top-of-barrier mechansim for ionization which they 
treated quantitatively for impact energies well above threshold. Extension of 
this theory to the threshold region provides an alternative means of building 
a quantitataive theory of fragmentation reactions at threshold. Ovchinnikov 
and I have combined these methods with the time-dependent propagator the- 
ory to obtain a complete theory for the ionization of H atoms by proton 
impact at threshold (16). This short contribution outlines our approach. 

I -  

11. GENERAL THEORY 

A fragmentation process is charactarized as one where some coordinate R 
which measures the overall size of the system, becomes infinite. The generic 
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Schrodinger equation for such a system has the form 

+ X(R,  z)8 = E!@ 1 d 2 8  
2M dR2 

where the set of all variables other than R are denoted by 2. It is important 
that the variables z are dimensionless. This is immediately the case when 
R represents the hyperradius (l), as is conventional for breakup of an atom 
into two electrons and a positively charged core. For ion-atom interactions R 
usually represents the internuclear distance while the remaining coordinates 
include the radial coordinate of the electron. This latter coordiante has di- 
mensions, but Solov’ev (17) introduced scaled variables q = r/R, where r is 
the electron coordinate relative to the center of mass of the two nuclei, to 
obtain the appropriate form of X with dimensionless variables. 

Eq.(2.1) is normally integrated along the real axis to connect the solution 
at one point R = R, with the solution at another point R = R f ,  but the solu- 
tions can be connected by integrating along any path in the complex R-plane. 
We use this flexibility to find a path along which good approximations are 
available. To find this path, adiabatic energy eigenvalues E,(R) for complex 
R are computed; 

Following Demkov (18), we consider a function E(R) which is single-valued 
on a multisheeted Riemann surface. On the real axis the single function 
E(R) takes on different values E,(R) depending upon which sheet the variable 
R is located. For our purposes an equivalent alternative function n(R) = 
l/dm is more useful. Fig.(l) shows a portion of the Riemann surface for 
this function computed using the program of Ovchinnikov and Solov’ev (15) 
for H$. The surface is a plot of the real part of n(R) vs the complex variable a. The essential features of this surface are the branch points where the 
various sheets are connected. The locus of branch points separates complex R 
space into two regions. In the region near the real axis the energy eigenvalues 
have a Rydberg structure charactaristic of the separated atom R -+ 00 or 
united atom R -+ 0 limits. The function n(R) interpolates smoothly between 
these two limits. On the other side of the locus of branch points E(R) has 
a harmonic oscillator structure. This stucture emerges because the potential 
V(z, y, z )  of an electron in the field of two positively charged particles has a 
saddle point where V(z, y, z )  is quadratic in all directions, i. e. the potential 
is that of an harmonic oscillator. In directions parallel to the internuclear axis, 
the oscillator is inverted, and the motion is unstable for real R. For complex 
R, however, the spring constants are complex and the motion in all directions 
is stable, i. e. the eigenfunctions cpn(R; z, y, z )  are localized near the top of the 
potential barrier between the two positively charged nuclei. This harmonic 
oscillator structure is exploited to compute an asympotic expression ET(R) 
for the energy eigenvalues in the harmonic oscillator region. We find 
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FIG. 1. Plot of n(R) = l / d q  v s a .  "Back" view of the surface showing a 
sloping flat region to the left of an infinite series of branch points. The first two 
branch points of this series where the lsa - 3du - 5ga sheets join are seen in this 
view. 

where, for H; the constants are 

C o = 3 ,  C l = 3 2 ,  C;=-4, 
Cz = -3V5,  Ci = 312 , C, = 39V5/16, Ci = 9/16 

The probability for ionization is obtained by integrating the Schrodinger 
equation approximately in the one channel WKB approximation for motion 
in R. If this is done on the real axis the system remains in the initial channel, 
and the elastic scattering phase shift is obtained. If the integration contour 
circles a branch point connecting a surface i with a surface f ,  the electronic 
wavefunction cp(R; q) starts out as cpi(R; q) at R, on the real axis and ends 
up as pf(R; q) at Rf . The transition probability for the transition i + f is 
just given by 

where K 2 ( R )  = 2 M [ E  - E(R)]  and c indicates that the integral is taken along 
a contour in the complex plane connecting Ri and R f .  In general, one must 
sum over all different contours that lead to the transition in question (19). 
For ionization, a contour that starts on the real axis at some small value of 
R, goes around the first topof-barrrier branch point and to infinity on the 
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FIG. 2. Plot of the locus of branch points in the complex plane. The smooth 
curve joining the points separates the plane into a region where the eigevalue spec- 
trum is Rydberg-like and a region where it is harmonic oscillator-like. The integra- 
tion path is also shown. From R, to Q, the exact E(R)  is used. From Q to oc) the 
harmonic oscillator approximation is employed. Since this approximation corresonds 
to an E(R) without branch points, the contour can be deformed to run from Q back 
to R, and then to 00 along the real axis. Integration along the real axis determines 
Pw(E). 

I mdR 

flat surface seen in Fig.(l) gives the probability for ionization via the top- 
of-barrier mechansim. The path of integration around the branch points is 
shown in Fig.(2). At the point Q, where IRI x 200au, the exact E(R) is 
well approximated by the asymptotic expression ET(R). Now this asymptotic 
expression has no branch points, thus to compute the integral of this function 
we may distort the path so that it returns to R, and goes to infinity along the 
real axis. This gives the factored form for the transition probability 

P(E)  = Po(JqPw(E) (2.6) 

where 

and 
2 

Pw(E) = /exp [ ~ w K r o d R ]  1 . (2.8) 

The function Po(E) is analytic in E so that the integral can be expanded in 
powers of E. We find 

Po(E) = exp[-(0.94 - 0.6E)j (2.9) 
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to lowest order in E. In contrast, &(E) is not analytic in E but the inte- 
grals can be done exactly. To lowest order in E, Eq.(2.8) together with the 
approximation 

where 

gives 

with 

K o ( R ) ~  = 2M[E - Co/R] = M 2 ~ ( R ) 2  

Pw(E) = ECadexp[--&- (1/6)ElogE] 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

The cross section is proportional to P(E)  thus the factor &(E) gives 
the Wannier threshold law for the ionization of atomic hydrogen by proton 
impact. In addition we also extract the non-analytic v% and E logE  terms 
which represent anharmonic corrections to the Wannier threshold law. These 
terms have been missed in the now standard theories of the cross sections for 
breakup of three charged particles. It should also be noted that the a term 
is absent for the model of three particles confined to a line. This latter model 
has been solved essentially exactly by Chris (9) and classically by Rost and 
Heller (21). 

The one-channel adiabatic calculation of ionization has been compared with 
measurements of the Hf + H + H+ + H +  + e by Pieksma and Ovchinnikov 
(20) and by Pieksma et al. (22) at velocities well above the threshold region. 
These workers find good agreement between theory and experiment thus this 
method is well established when 1/M << 1. In addition the approximate 
index cad  that we obtain is in error by only terms of the order of magnitude of 
1/M. Alternatively, for the ionization of hydrogen by electron impact, (ad is 
in error by an unacceptable factor of 23%. This indicates that wave function 
propagation in the harmonic oscillator region is not adequately described by 
the one-channel adiabatic theory. It is at this point that we connect with 
the work of Chris who introduced more general semiclassical methods. In 
our own work, semiclassical methods identify dR/v(R) with a new variable 
d t  = dR/v(R).  In the harmonic oscillator region where R and t are com- 
plex, Eq.(2.1) becomes a Schrodinger equation for a harmonic oscillator with 
time-dependent spring constants k ( t )  and masses m(t). Feynman’s propaga- 
tor KF(t, q; t‘, 9’) for such time dependent oscillators is known exactly thus 
the lowest order solution is also known exactly. In essence the Schrodinger 
equation is integrated from Q to infinity using the harmonic oscillator approx- 
imation rather than the one-channel WKB approxmation. As for this latter 
solution, one may change the path of integration to go from Q to Ri and then 
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from Ri to infinity. The integration from R, to infinity along the real axis 
gives the threshold law with the correct Wannier index <W rather than (ad. 

There is a simple connection between Q d  and (w which emerges upon 
examining the form of KF(t, q; t’, q’). Along the real axis KF(t, q; t’, 4’) just 
equals a phase factor times a normalization constant. The normalization 
constant has the form 

N(t) = exp [L’ u(t‘)dt’] (2.14) 

where u(t)is a known function. Since dt = dR/u(R) we define a diabatic 
energy Q(R, E )  according to 

E d ( R , E )  = u[t(R,E)]. (2.15) 

This diabatic energy is expanded in powers of E and only the first term is 
retained. This gives an expression Q(R, 0) that is proportional to R-3/2 just 
as is the adiabatic value; only the proportionality constants C{ and CI are 
changed. This result was actually anticipated earlier by Rau (2). Substitu- 
tion of these diabatic values of the constants into Eqs.(2.8) an expression for 
Pw(E) that differs from Eq.(2.12) only through the replacement of Q d  by 
the correct Wannier index (w. In this way we see that propagation through 
the harmonic oscillator region using Feynman’s propagator yields the correct 
Wannier threshold law. Higher order terms in ET(R) still give the non-analytic 

term in the cross section as obtained in the onechannel approximation. 
The above results pertain to the Wannier threshold for ionization by proton 

impact. For these processes the method gives absolute cross sections as well 
as an analytic form for the cross section which includes the usual Wannier 
power law E C W  and the non-anlaytic a and E log E terms that represent 
the effects of anharmonic corrections in the asymptotic region. At present 
there are no data on the Wannier threshold law for proton impact, thus to 
test the non-analytic terms we consider ionization by electron impact. For this 
system, a complete theory requires the computation of ET(R) in hyperspher- 
ical coordinates. This has not been done yet, however, as Feagin shows, one 
can describe the factor Pw(E) which comes from the harmonic oscillator re- 
gion using the Born-Oppenheimer representation where R is the inter-electron 
coordinate. For electron impact one finds that the function Pw(E) is given 
bY 

&(E) = e x p [ l . l 2 6 9 ( - m ) ] .  (2.16) 

The correction that we find is unexpected and has not been obtained by 
other means. To test this result we have fitted the data of McGowan and 
Clark (23) over the extend energy range from 0 to 8 eV above threshold. 
Here it is necessary to include a linear term with a coefficient fitted to the 
data. The coefficient is found to equal 0.9. With this fitting we obtain good 
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FIG. 3. Comparison of the fitted function P(E) with the experimental data (dots) 
of Ref. (23) 

agreement over the entire energy range as seen in Fig.(3). A recent classical 
calculation using the model with two electrons and the nucleus confined to 
a line also agrees well with the data. For this latter model the 0 term 
is absent in the quantal theory whereas we find that it represents the most 
important correction to Wannier's threshold law for the real system. We are 
not able to explain this contradiction at present. In this connection it should 
be noted that if the square root term is omitted but the linear term retained, 
the data cannot be fitted over the 8 eV energy range. 

For ionization by proton impact the present theory has no adjustable param- 
eters. A similarly complete theory for electron impact requires the calculation 
of adiabatic hyperspherical eigenvalues for complex R. This is a difficult task, 
but, by using the basis spline programs developed by Chris and coworkers 
(24), it has proved possible to calculate just such eigenvalues. It seems that 
Chis is with us in spirit as we continue exploring this problem which held such 
great facination for him. 
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