3,643 research outputs found

    RDSS Digital Preservation - Records and Archives Management Pilot

    Get PDF
    A Report written for Jisc by University of Westminster

    Draft genome sequence of "Candidatus Cronobacter colletis" NCTC 14934T, a new species in the genus Cronobacter

    Get PDF
    Members of the Cronobacter genus are associated with serious infections in neonates. This is the first report of the draft genome sequence for the newly proposed species Cronobacter colletis

    Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans.

    Get PDF
    Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin

    Resolving the nature of electronic excitations in resonant inelastic x-ray scattering

    Get PDF
    The study of elementary bosonic excitations is essential toward a complete description of quantum electronic solids. In this context, resonant inelastic X-ray scattering (RIXS) has recently risen to becoming a versatile probe of electronic excitations in strongly correlated electron systems. The nature of the radiation-matter interaction endows RIXS with the ability to resolve the charge, spin and orbital nature of individual excitations. However, this capability has been only marginally explored to date. Here, we demonstrate a systematic method for the extraction of the character of excitations as imprinted in the azimuthal dependence of the RIXS signal. Using this novel approach, we resolve the charge, spin, and orbital nature of elastic scattering, (para-)magnon/bimagnon modes, and higher energy dd excitations in magnetically-ordered and superconducting copper-oxide perovskites (Nd2CuO4 and YBa2Cu3O6.75). Our method derives from a direct application of scattering theory, enabling us to deconstruct the complex scattering tensor as a function of energy loss. In particular, we use the characteristic tensorial nature of each excitation to precisely and reliably disentangle the charge and spin contributions to the low energy RIXS spectrum. This procedure enables to separately track the evolution of spin and charge spectral distributions in cuprates with doping. Our results demonstrate a new capability that can be integrated into the RIXS toolset, and that promises to be widely applicable to materials with intertwined spin, orbital, and charge excitations

    Electronic and magnetic excitations in the "half-stuffed" Cu--O planes of Ba2_2Cu3_3O4_4Cl2_2 measured by resonant inelastic x-ray scattering

    Full text link
    We use resonant inelastic x-ray scattering (RIXS) at the Cu L3_3 edge to measure the charge and spin excitations in the "half-stuffed" Cu--O planes of the cuprate antiferromagnet Ba2_2Cu3_3O4_4Cl2_2. The RIXS line shape reveals distinct contributions to the dddd excitations from the two structurally inequivalent Cu sites, which have different out-of-plane coordinations. The low-energy response exhibits magnetic excitations. We find a spin-wave branch whose dispersion follows the symmetry of a CuO2_2 sublattice, similar to the case of the "fully-stuffed" planes of tetragonal CuO (T-CuO). Its bandwidth is closer to that of a typical cuprate material, such as Sr2_2CuO2_2Cl2_2, than it is to that of T-CuO. We interpret this result as arising from the absence of the effective four-spin inter-sublattice interactions that act to reduce the bandwidth in T-CuO.Comment: 10 pages, 8 figure

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Evaluational adjectives

    Get PDF
    This paper demarcates a theoretically interesting class of "evaluational adjectives." This class includes predicates expressing various kinds of normative and epistemic evaluation, such as predicates of personal taste, aesthetic adjectives, moral adjectives, and epistemic adjectives, among others. Evaluational adjectives are distinguished, empirically, in exhibiting phenomena such as discourse-oriented use, felicitous embedding under the attitude verb `find', and sorites-susceptibility in the comparative form. A unified degree-based semantics is developed: What distinguishes evaluational adjectives, semantically, is that they denote context-dependent measure functions ("evaluational perspectives")—context-dependent mappings to degrees of taste, beauty, probability, etc., depending on the adjective. This perspective-sensitivity characterizing the class of evaluational adjectives cannot be assimilated to vagueness, sensitivity to an experiencer argument, or multidimensionality; and it cannot be demarcated in terms of pretheoretic notions of subjectivity, common in the literature. I propose that certain diagnostics for "subjective" expressions be analyzed instead in terms of a precisely specified kind of discourse-oriented use of context-sensitive language. I close by applying the account to `find x PRED' ascriptions
    • …
    corecore