3,515 research outputs found
BLITZEN: A highly integrated massively parallel machine
The architecture and VLSI design of a new massively parallel processing array chip are described. The BLITZEN processing element array chip, which contains 1.1 million transistors, serves as the basis for a highly integrated, miniaturized, high-performance, massively parallel machine that is currently under development. Each processing element has 1K bits of static RAM and performs bit-serial processing with functional elements for arithmetic, logic, and shifting
A V-Diagram for the Design of Integrated Health Management for Unmanned Aerial Systems
Designing Integrated Vehicle Health Management (IVHM) for Unmanned Aerial Systems (UAS) is inherently complex. UAS are a system of systems (SoS) and IVHM is a product-service, thus the designer has to take into account many factors, such as: the design of the other systems of the UAS (e.g. engines, structure, communications), the split of functions between elements of the UAS, the intended operation/mission of the UAS, the cost verses benefit of monitoring a system/component/part, different techniques for monitoring the health of the UAS, optimizing the health of the fleet and not just the individual UAS, amongst others. The design of IVHM cannot sit alongside, or after, the design of UAS, but itself be integrated into the overall design to maximize IVHM’s potential.
Many different methods exist to help design complex products and manage the process. One method used is the V-diagram which is based on three concepts: decomposition & definition; integration & testing; and verification & validation. This paper adapts the V-diagram so that it can be used for designing IVHM for UAS. The adapted v-diagram splits into different tracks for the different system elements of the UAS and responses to health states (decomposition and definition). These tracks are then combined into an overall IVHM provision for the UAS (integration and testing), which can be verified and validated. The stages of the adapted V-diagram can easily be aligned with the stages of the V-diagram being used to design the UAS bringing the design of the IVHM in step with the overall design process. The adapted V-diagram also allows the design IVHM for a UAS to be broken down in to smaller tasks which can be assigned to people/teams with the relevant competencies. The adapted V-diagram could also be used to design IVHM for other SoS and other vehicles or products
Leech Parasitism of the Gulf Coast Box Turtle, Terrapene carolina major (Testudines:Emydidae) in Mississippi, USA
Ten leeches were collected from a Gulf Coast box turtle, Terrapene carolina major, found crossing a road in Gulfport, Harrison County, Mississippi, USA. Eight of the leeches were identified as Placobdella multilineata and 2 were identified as Helobdella europaea. This represents the second vouchered report of leeches from a box turtle. Helobdella europaea is reported for the first time associated with a turtle and for the second time from the New World
Recommended from our members
Profiting from enabling technologies?
How to profit from innovation has been an important question for both innovation scholars and practitioners over the years. It is certainly a relevant question for all types of technological innovation, including emerging ones. Teece's (1986) profiting from innovation (PFI) framework sets forth a theory of the relevant contingencies. However, Teece's framework focuses on technologies with applications in specific domains. We focus on the question of how to profit from enabling technologies: technologies that are applicable across multiple domains. We argue that capturing value in such circumstances is fundamentally different from profiting from less-enabling technologies and raises new issues with respect to the relevant business models and public policies. This paper's contribution is threefold. It formally revises and extends the original PFI framework to include the case of enabling technologies; it provides empirical evidence to support the distinction between profiting from enabling as compared to profiting from narrower "discrete" technologies; and it generates perspectives on the appropriate business models for these technologies and discusses related public-policy implications, in light of the fact that the share of the benefits the innovator can capture is likely to be even smaller for enabling than for discrete technologies
Self healing slip pulses along a gel/glass interface
We present an experimental evidence of self-healing shear cracks at a
gel/glass interface. This system exhibits two dynamical regimes depending on
the driving velocity : steady sliding at high velocity (> Vc = 100-125 \mu
m/s), caracterized by a shear-thinning rheology, and periodic stick-slip
dynamics at low velocity. In this last regime, slip occurs by propagation of
pulses that restick via a ``healing instability'' occuring when the local
sliding velocity reaches the macroscopic transition velocity Vc. At driving
velocities close below Vc, the system exhibits complex spatio-temporal
behavior.Comment: 4 pages, 6 figure
Connecting in the Kitchen:An Empirical Study of Physical Interactions while Cooking Together at Home
Recent research has explored the role technology might play in future kitchens, including virtually dining together, recipe sharing, augmented kitchen furniture, reactive cooking utensils and gestural interaction. When people come together in a kitchen to cook it is about more than just production of sustenance – it is about being together, helping each other, exchanging stories, and contributing to the gradual emergence of a shared meal. In this paper we present a digital ethnography of how people coordinate and cooperate in their kitchens when cooking together for the purpose of inspiring the design of social natural user interactions for technologies in the kitchen. The study is based on 61 YouTube videos of people cooking together analyzed using the frameworks of proxemics and F-formations. Our findings unfold and illustrate relationships between people’s spatial organization, their cooking activities and physical kitchen layouts. Based on these we discuss the kitchen as a design space and particularly the opportunities for social natural user interaction design. Author Keywords F-formations; proxemics; natural user interaction; cooking together; digital ethnography; digital kitchens; the home ACM Classification Keywords H5.3 Computer-supported cooperative wor
Stem-Boring Caterpillars of Switchgrass in the Midwestern United States
Lepidopteran stem borers were collected from switchgrass, Panicum virgatum L., tillers showing symptoms of infestation at seven locations in Illinois and Iowa, with additional observations made on larval and adult activity. Blastobasis repartella (Dietz) (Coleophoridae), whose only known host is switchgrass, was common in plots grown for \u3e5 yr, whereas the polyphagous stalk borer, Papaipema nebris (Guenée) (Noctuidae), was abundant in newly established (i.e., first- and second year) switchgrass. Haimbachia albescens Capps (Crambidae) was collected from two locations in Illinois, making switchgrass the first known host for this species. Entry holes made by B. repartella and H. albescens were usually 1-2 cm above the soil surface, precluding discrimination between these species based on external appearance of damage. Although P. nebris often entered stems within 5 cm of the soil surface, they also seemed to move between stems and were the only species entering stems at heights \u3e15 cm. Adults of B. repartella were active on and above the switchgrass canopy by 2130 hours, with peak activity at ≈0230 hours. Activity of B. repartella adults seemed greatly reduced on one night with relatively cool temperatures and low wind speeds. Data from switchgrass and giant ragweed, Ambrosia trifida L., suggest P. nebris larvae move out of switchgrass during July in search of hosts with larger diameter stems, although by then hosts such as corn, Zea mays L., or Miscanthus spp. may have outgrown the potential for serious damage. However, switchgrass could contribute to greater adult populations of P. nebris if thick-stemmed hosts such as giant ragweed are not managed
Advection, diffusion and delivery over a network
Many biological, geophysical and technological systems involve the transport
of resource over a network. In this paper we present an algorithm for
calculating the exact concentration of resource at any point in space or time,
given that the resource in the network is lost or delivered out of the network
at a given rate, while being subject to advection and diffusion. We consider
the implications of advection, diffusion and delivery for simple models of
glucose delivery through a vascular network, and conclude that in certain
circumstances, increasing the volume of blood and the number of glucose
transporters can actually decrease the total rate of glucose delivery. We also
consider the case of empirically determined fungal networks, and analyze the
distribution of resource that emerges as such networks grow over time. Fungal
growth involves the expansion of fluid filled vessels, which necessarily
involves the movement of fluid. In three empirically determined fungal networks
we found that the minimum currents consistent with the observed growth would
effectively transport resource throughout the network over the time-scale of
growth. This suggests that in foraging fungi, the active transport mechanisms
observed in the growing tips may not be required for long range transport.Comment: 54 pages including appendix, 10 figure
Grasses and Legumes for Cellulosic Bioenergy
Human life has depended on renewable sources of bioenergy for many thousands of years, since the time humans fi rst learned to control fi re and utilize wood as the earliest source of bioenergy. The exploitation of forage crops constituted the next major technological breakthrough in renewable bioenergy, when our ancestors began to domesticate livestock about 6000 years ago. Horses, cattle, oxen, water buffalo, and camels have long been used as sources of mechanical and chemical energy. They perform tillage for crop production, provide leverage to collect and transport construction materials, supply transportation for trade and migratory routes, and create manure that is used to cook meals and heat homes. Forage crops—many of which form the basis of Grass: The 1948 Yearbook of Agriculture (Stefferud, 1948), as well as the other chapters of this volume—have composed the principal or only diet of these draft animals since the dawn of agriculture
- …