653 research outputs found
Automated Security Analysis of IoT Software Updates
IoT devices often operate unsupervised in ever-changing environments for several years. Therefore, they need to be updated on a regular basis. Current approaches for software updates on IoT, like the recent SUIT proposal, focus on granting integrity and confidentiality but do not analyze the content of the software update, especially the IoT application which is deployed to IoT devices. To this aim, in this paper, we present IoTAV, an automated software analysis framework for systematically verifying the security of the applications contained in software updates w.r.t. a given security policy. Our proposal can be adopted transparently by current IoT software updates workflows. We prove the viability of IoTAV by testing our methodology on a set of actual RIOT OS applications. Experimental results indicate that the approach is viable in terms of both reliability and performance, leading to the identification of 26 security policy violations in 31 real-world RIOT applications
GaN and InN nanowires grown by MBE: a comparison
Morphological, optical and transport properties of GaN and InN nanowires
grown by molecular beam epitaxy (MBE) have been studied. The differences
between the two materials in respect to growth parameters and optimization
procedure was stressed. The nanowires crystalline quality has been investigated
by means of their optical properties. A comparison of the transport
characteristics was given. For each material a band schema was shown, which
takes into account transport and optical features and is based on Fermi level
pinning at the surface.Comment: 5 pages, 5 figure
Toward a first-principles integrated simulation of tokamak edge plasmas
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles
Two-dimensional turbulence in magnetised plasmas
In an inhomogeneous magnetised plasma the transport of energy and particles
perpendicular to the magnetic field is in general mainly caused by quasi
two-dimensional turbulent fluid mixing. The physics of turbulence and structure
formation is of ubiquitous importance to every magnetically confined laboratory
plasma for experimental or industrial application. Specifically, high
temperature plasmas for fusion energy research are also dominated by the
properties of this turbulent transport. Self-organisation of turbulent vortices
to mesoscopic structures like zonal flows is related to the formation of
transport barriers that can significantly enhance the confinement of a fusion
plasma. This subject of great importance in research is rarely touched on in
introductory plasma physics or continuum dynamics courses. Here a brief
tutorial on 2D fluid and plasma turbulence is presented as an introduction to
the field, appropriate for inclusion in undergraduate and graduate courses.Comment: This is an author-created, un-copyedited version of an article
published in European Journal of Physics. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher authenticated version
is available online at doi: 10.1088/0143-0807/29/5/00
DNA-decorated carbon nanotubes for chemical sensing
We demonstrate a new, versatile class of nanoscale chemical sensors based on
single-stranded DNA (ss-DNA) as the chemical sensors recognition site and
single-walled carbon nanotube field effect transistors (swCN-FET) as the
electronic read-out component. swCN-FETs with a nanoscale coating of ss-DNA
respond to gas odors that do not cause a detectable conductivity change in bare
devices. Responses of ss-DNA/swCN-FETs differ in sign and magnitude for
different gases, and can be tuned by choosing the base sequence of the ss-DNA.
ss-DNA/swCN-FET sensors detect a variety of odors, with rapid response and
recovery times on the scale of seconds. The sensor surface is
self-regenerating: samples maintain a constant response with no need for sensor
refreshing through at least 50 gas exposure cycles. This very remarkable set of
attributes makes sensors based on ss-DNA decorated nanotubes very promising for
"electronic nose" and "electronic tongue" applications ranging from homeland
security to disease diagnosis.Comment: 9 pages, 5 figures, Nano Letters web release: 23-Aug-200
The antioxidant activity of some curcuminoids and chalcones
The antioxidant properties of the synthetic compound (C1)–(C8), which comprised 7 curcuminoids and a chalcone, were evaluated by two complementary assays, DPPH and β-carotene/linoleic acid. It was found that, in general, the free radical scavenging ability of (C1)–(C8) was concentration-dependent. Compounds (C1) and (C4), which contained (4-OH) phenolic groups, were found to be highly potent antioxidants with higher antioxidant values than BHT suggesting that synthetic curcuminoids are more potent antioxidants than standard antioxidants like BHT. Using β-carotene-linoleic acid assay, only the water-soluble 2, 4,6-trihydroxyphenolic chalcone (C5) showed 85.2 % inhibition of the formation of conjugated dienes reflecting on its potent antioxidant activity
Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain
VGF (non-acronymic) was first highlighted to have a role in energy homeostasis through experiments involving dietary manipulation in mice. Fasting increased VGF mRNA in the Arc and levels were subsequently reduced upon refeeding. This anabolic role for VGF was supported by observations in a VGF null (VGF-/-) mouse and in the diet-induced and gold-thioglucose obese mice. However, this anabolic role for VGF has not been supported by a number of subsequent studies investigating the physiological effects of VGF-derived peptides. Intracerebroventricular (ICV) infusion of TLQP-21 increased resting energy expenditure and rectal temperature in mice and protected against diet-induced obesity. Similarly, ICV infusion of TLQP-21 into Siberian hamsters significantly reduced body weight, but this was due to a decrease in food intake, with no effect on energy expenditure. Subsequently NERP-2 was shown to increase food intake in rats via the orexin system, suggesting opposing roles for these VGF-derived peptides. Thus to further elucidate the role of hypothalamic VGF in the regulation of energy homeostasis we utilised a recombinant adeno-associated viral vector to over-express VGF in adult male Siberian hamsters, thus avoiding any developmental effects or associated functional compensation. Initially, hypothalamic over-expression of VGF in adult Siberian hamsters produced no effect on metabolic parameters, but by 12 weeks post-infusion hamsters had increased oxygen consumption and a tendency to increased carbon dioxide production; this attenuated body weight gain, reduced interscapular white adipose tissue and resulted in a compensatory increase in food intake. These observed changes in energy expenditure and food intake were associated with an increase in the hypothalamic contents of the VGF-derived peptides AQEE, TLQP and NERP-2. The complex phenotype of the VGF-/- mice is a likely consequence of global ablation of the gene and its derived peptides during development, as well as in the adult
Finite-Element Modelling of Biotransistors
Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET) is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal
Axillary sentinel lymph node biopsy after mastectomy: a case report
<p>Abstract</p> <p>Background</p> <p>Sentinel lymph node biopsy has been established as the preferred method for staging early breast cancer. A prior history of mastectomy is felt to be a contraindication.</p> <p>Case presentation</p> <p>A patient with recurrent breast cancer in her skin flap was discovered to have positive axillary sentinel nodes by sentinel lymph node biopsy five years after mastectomy for ductal carcinoma in situ.</p> <p>Conclusion</p> <p>A prior history of mastectomy may not be an absolute contraindication to sentinel lymph node biopsy.</p
Size Scaling of Turbulent Transport in Magnetically Confined Plasmas
Transport scaling with respect to device size in magnetically confined plasmas is critically examined for electrostatic ion temperature gradient turbulence using global gyrokinetic particle simulations. It is found, by varying device size normalized by ion gyroradius while keeping other dimensionless plasma parameters fixed, that fluctuation scale length is microscopic in the presence of zonal flows. The local transport coefficient exhibits a gradual transition from a Bohm-like scaling for device sizes corresponding to present-day experiments to a gyro-Bohm scaling for future larger devices
- …