8,507 research outputs found
Facultative endosymbionts of aphid populations from coastal dunes of the North Sea
Aphids establish symbiotic associations with a diverse assemblage of mutualistic bacteria. Some of them are not required for the host’s survival but still have a crucial impact on the biology and ecology of their host. Facultative symbionts may modify important host-life-history traits and affect the interactions of aphids with other members of the community. So far several species of aphid have been reported to occur in coastal dunes. Given the extreme environmental conditions of this type of habitat and the wide distribution along the European coast of some aphid species, these aphids would be expected to show variation in their facultative endosymbionts. However, there is currently no information available for these species. To address this question, we collected specimens from different populations of aphids (i.e. Schizaphis rufula, Laingia psammae and Rhopalosiphum padi) associated with the dune grass Ammophila arenaria in several locations of the North and the Irish Sea. By means of specific diagnostic PCR’s we checked for the presence of facultative bacterial endosymbionts in these populations. Results of this explorative assessment showed variation in the endosymbiont community according to species and location. All populations sampled along the North Sea coast were associated with the facultative endosymbiont Serratia symbiotica. Hamiltonella defensa was only detected in some specimens coming from the population in Het Zwin, Belgium. Regiella insecticola and the ¿-protobacteria X-type were only found associated with the population of Schizaphis rufula in De Panne, Belgium. Although further experiments are necessary to characterize the nature of these symbiotic relationships, our correlation analyses showed a significant co-occurrence of S. symbiotica with H. defensa and R. insecticola with X-type protobacteria suggesting reciprocal regulatory functions. No significant correlation was detected between the number of mummies (i.e. carcasses of aphids parasitized by wasps) and the occurrence of bacterial symbionts. The potential role of these symbionts in coastal dune ecosystems is discussed
Brownian Entanglement
We show that for two classical brownian particles there exists an analog of
continuous-variable quantum entanglement: The common probability distribution
of the two coordinates and the corresponding coarse-grained velocities cannot
be prepared via mixing of any factorized distributions referring to the two
particles in separate. This is possible for particles which interacted in the
past, but do not interact in the present. Three factors are crucial for the
effect: 1) separation of time-scales of coordinate and momentum which motivates
the definition of coarse-grained velocities; 2) the resulting uncertainty
relations between the coordinate of the brownian particle and the change of its
coarse-grained velocity; 3) the fact that the coarse-grained velocity, though
pertaining to a single brownian particle, is defined on a common context of two
particles. The brownian entanglement is a consequence of a coarse-grained
description and disappears for a finer resolution of the brownian motion. We
discuss possibilities of its experimental realizations in examples of
macroscopic brownian motion.Comment: 18 pages, no figure
Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame
The Planck spectrum of thermal scalar radiation is derived suggestively
within classical physics by the use of an accelerating coordinate frame. The
derivation has an analogue in Boltzmann's derivation of the Maxwell velocity
distribution for thermal particle velocities by considering the thermal
equilibrium of noninteracting particles in a uniform gravitational field. For
the case of radiation, the gravitational field is provided by the acceleration
of a Rindler frame through Minkowski spacetime. Classical zero-point radiation
and relativistic physics enter in an essential way in the derivation which is
based upon the behavior of free radiation fields and the assumption that the
field correlation functions contain but a single correlation time in thermal
equilibrium. The work has connections with the thermal effects of acceleration
found in relativistic quantum field theory.Comment: 23 page
Beaming into the News: A System for and Case Study of Tele-Immersive Journalism
We show how a combination of virtual reality and robotics can be used to beam a physical representation of a person to a distant location, and describe an application of this system in the context of journalism. Full body motion capture data of a person is streamed and mapped in real time, onto the limbs of a humanoid robot present at the remote location. A pair of cameras in the robot's 'eyes' stream stereoscopic video back to the HMD worn by the visitor, and a two-way audio connection allows the visitor to talk to people in the remote destination. By fusing the multisensory data of the visitor with the robot, the visitor's 'consciousness' is transformed to the robot's body. This system was used by a journalist to interview a neuroscientist and a chef 900 miles distant, about food for the brain, resulting in an article published in the popular press
A decomposition algorithm for feedback min-max model predictive control
Abstract-An algorithm for solving feedback min-max model predictive control for discrete time uncertain linear systems with constraints is presented in the paper. The algorithm solves the corresponding multi-stage min-max linear optimization problem. It is based on applying recursively a decomposition technique to solve the min-max problem via a sequence of low complexity linear programs. It is proved that the algorithm converges to the optimal solution in finite time. Simulation results are provided to compare the proposed algorithm with other approaches
Schroedingers equation with gauge coupling derived from a continuity equation
We consider a statistical ensemble of particles of mass m, which can be
described by a probability density \rho and a probability current \vec{j} of
the form \rho \nabla S/m. The continuity equation for \rho and \vec{j} implies
a first differential equation for the basic variables \rho and S. We further
assume that this system may be described by a linear differential equation for
a complex state variable \chi. Using this assumptions and the simplest possible
Ansatz \chi(\rho,S) Schroedingers equation for a particle of mass m in an
external potential V(q,t) is deduced. All calculations are performed for a
single spatial dimension (variable q) Using a second Ansatz \chi(\rho,S,q,t)
which allows for an explict q,t-dependence of \chi, one obtains a generalized
Schroedinger equation with an unusual external influence described by a
time-dependent Planck constant. All other modifications of Schroeodingers
equation obtained within this Ansatz may be eliminated by means of a gauge
transformation. Thus, this second Ansatz may be considered as a generalized
gauging procedure. Finally, making a third Ansatz, which allows for an
non-unique external q,t-dependence of \chi, one obtains Schroedingers equation
with electromagnetic potentials \vec{A}, \phi in the familiar gauge coupling
form. A possible source of the non-uniqueness is pointed out.Comment: 25 pages, no figure
An analog of Heisenberg uncertainty relation in prequantum classical field theory
Prequantum classical statistical field theory (PCSFT) is a model which
provides a possibility to represent averages of quantum observables, including
correlations of observables on subsystems of a composite system, as averages
with respect to fluctuations of classical random fields. PCSFT is a classical
model of the wave type. For example, "electron" is described by electronic
field. In contrast to QM, this field is a real physical field and not a field
of probabilities. An important point is that the prequantum field of e.g.
electron contains the irreducible contribution of the background field, vacuum
fluctuations. In principle, the traditional QM-formalism can be considered as a
special regularization procedure: subtraction of averages with respect to
vacuum fluctuations. In this paper we derive a classical analog of the
Heisenberg-Robertson inequality for dispersions of functionals of classical
(prequantum) fields. PCSFT Robertson-like inequality provides a restriction on
the product of classical dispersions. However, this restriction is not so rigid
as in QM. The quantum dispersion corresponds to the difference between e.g. the
electron field dispersion and the dispersion of vacuum fluctuations. Classical
Robertson-like inequality contains these differences. Hence, it does not imply
such a rigid estimate from below for dispersions as it was done in QM
Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming
Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone, which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging −0.80 ± 0.39 m yr−1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. If current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates
Leiomyosarcoma of the breast in a patient with a 10-year-history of cyclophosphamide exposure: a case report
A 50 year old woman with a 10-year history of systemic lupus erythematosus (SLE) and intermittent low-dose cyclophosphamide therapy developed a palpable mass at the periphery of her left breast. Ultrasound guided core biopsy revealed a spindle cell neoplasm characterized on final pathology as a low grade leiomyosarcoma
Eastern Mediterranean water outflow during the Younger Dryas was twice that of the present day
Eastern Mediterranean deep-intermediate convection was highly sensitive to varying inputs
of fresh water fluxes associated with increased rainfall during the African Humid period (15-6
kyr Before Present). Here we investigate changes in the water-outflow from the Eastern
Mediterranean Sea since the last deglaciation using neodymium isotope ratios. Our results
indicate enhanced outflow during the Younger Dryas, two times higher than present-day
outflow and about three times higher than during the last Sapropel. We propose that the
increased outflow into the western Mediterranean over the Younger Dryas was the result of
the combined effect of 1) enhanced climate-driven convection in the Aegean Sea and 2)
reduced convection of western deep water during this period. Our results provide solid
evidence for an enhanced Younger Dryas westward flow of Eastern Mediterranean sourced
waters in consonance with an intensification of Mediterranean water-outflow during a
weakened state of the Atlantic circulatio
- …