487 research outputs found

    Investigations on Tetragonally Distorted Sodium Thallide NaTl‐tI8

    Get PDF
    In-depth investigations of the long-time known Zintl phase NaTl revealed a phase transition of tetragonal NaTl-tI8 [I4(1)/amd; a = 5.2268(9) angstrom, c = 7.539(1) angstrom, V = 205.97(9) angstrom(3)] to Zintl's cubic NaTl-cF16 [Fd3m; a = 7.4697(6) angstrom, V = 416.79(5) angstrom(3)] between 351 and 355 K. This phase transformation was observed for NaTl prepared by two different synthetic routes including Zintl's original procedure. An excess of sodium applied during the synthesis in liquid ammonia also resulted in the formation of NaTl-tI8. DSC measurements suggest a first order phase transition. In addition to in-situ temperature dependent powder X-ray diffraction experiments, DSC measurements and solid-state NMR investigations, we also performed theoretical DOS and band structure calculations for the cubic and tetragonal phase, respectively. The results suggest Na-Tl interactions in the second coordination sphere being responsible for the observed tetragonal distortion of Zintl's cubic NaTl

    Towards a quantum-chemical description of crystalline insulators: A Wannier-function-based Hartree-Fock study of Li2O and Na2O

    Full text link
    A recently proposed approach for performing electronic-structure calculations on crystalline insulators in terms of localized orthogonal orbitals is applied to the oxides of lithium and sodium, Li2O and Na2O. Cohesive energies, lattice constants and bulk moduli of the aforementioned systems are determined at the Hartree-Fock level, and the corresponding values are shown to be in excellent agreement with the values obtained by a traditional Bloch-orbital-based Hartree-Fock approach. The present Wannier-function-based approach is expected to be advantageous in the treatment of electron-correlation effects in an infinite solid by conventional quantum-chemical methods.Comment: 15 Pages, RevTex, 3 postscript figures (included), to appear in the Journal of Chemical Physics, May 15, 199

    Ab initio simulations of liquid NaSn alloys: Zintl anions and network formation

    Full text link
    Using the Car-Parrinello technique, ab initio molecular dynamics simulations are performed for liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80 % sodium). The obtained structure factors agree well with the data from neutron scattering experiments. The measured prepeak in the structure factor is reproduced qualitatively for most compositions. The calculated and measured positions of all peaks show the same trend as function of the composition.\\ The dynamic simulations also yield information about the formation and stability of Sn4_4 clusters (Zintl anions) in the liquid. In our simulations of compositions with 50 and 57 % sodium we observe the formation of networks of tin atoms. Thus, isolated tin clusters are not stable in such liquids. For the composition with 20 % tin only isolated atoms or dimers of tin appear, ``octet compounds'' of one Sn atom surrounded by 4 Na atoms are not observed.Comment: 12 pages, Latex, 3 Figures on reques

    Covalent bonding and the nature of band gaps in some half-Heusler compounds

    Full text link
    Half-Heusler compounds \textit{XYZ}, also called semi-Heusler compounds, crystallize in the MgAgAs structure, in the space group F4ˉ3mF\bar43m. We report a systematic examination of band gaps and the nature (covalent or ionic) of bonding in semiconducting 8- and 18- electron half-Heusler compounds through first-principles density functional calculations. We find the most appropriate description of these compounds from the viewpoint of electronic structures is one of a \textit{YZ} zinc blende lattice stuffed by the \textit{X} ion. Simple valence rules are obeyed for bonding in the 8-electron compound. For example, LiMgN can be written Li+^+ + (MgN)^-, and (MgN)^-, which is isoelectronic with (SiSi), forms a zinc blende lattice. The 18-electron compounds can similarly be considered as obeying valence rules. A semiconductor such as TiCoSb can be written Ti4+^{4+} + (CoSb)4^{4-}; the latter unit is isoelectronic and isostructural with zinc-blende GaSb. For both the 8- and 18-electron compounds, when \textit{X} is fixed as some electropositive cation, the computed band gap varies approximately as the difference in Pauling electronegativities of \textit{Y} and \textit{Z}. What is particularly exciting is that this simple idea of a covalently bonded \textit{YZ} lattice can also be extended to the very important \textit{magnetic} half-Heusler phases; we describe these as valence compounds \textit{ie.} possessing a band gap at the Fermi energy albeit only in one spin direction. The \textit{local} moment in these magnetic compounds resides on the \textit{X} site.Comment: 18 pages and 14 figures (many in color

    Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity

    Get PDF
    Because of the implications for plasmas in the laboratory and in space, attention has been drawn to inhomogeneous energy-density driven (IEDD) waves that are sustained by velocity-shear-induced inhomogeneity in cross-field plasma flow. These waves have a frequency vr in the lab frame within an order of magnitude of the ion gyrofrequency vci, propagate nearly perpendicular to the magnetic field (kz/k^ \u3c\u3c 1), and can be Landau resonant (0 \u3c v1/kz \u3c nd) with a parallel drifting electron population (drift speed nd), where subscripts 1 and r indicate frequency in the frame of flowing ions and in the lab frame, respectively, and kz is the parallel component of the wavevector. A transition in phase velocity from 0 \u3c v1/kz \u3c nd to 0 \u3e v1/kz \u3e nd for a pair of IEDD eigenmodes is observed as the degree of in-homogeneity in the transverse E × B flow is increased in a magnetized plasma column. For weaker velocity shear, both eigenmodes are dissipative, i.e. in Landau resonance, with kz nd \u3e 0. For stronger shear, both eigenmodes become reactive, with one\u27s wavevector component kz remaining parallel, but with v1/kz \u3e nd , and the other\u27s wavevector component kz becoming anti-parallel, so that 0 \u3e v1/kz . For both eigenmodes, the transition (1) involves a small frequency shift and (2) does not involve a sign change in the wave energy density, which is proportional to vr v1, both of which are previously unrecognized aspects of inhomogeneous energy-density driven waves

    Resonant-to-nonresonant transition in electrostatic ion-cyclotron wave phase velocity

    Get PDF
    Because of the implications for plasmas in the laboratory and in space, attention has been drawn to inhomogeneous energy-density driven (IEDD) waves that are sustained by velocity-shear-induced inhomogeneity in cross-field plasma flow. These waves have a frequency vr in the lab frame within an order of magnitude of the ion gyrofrequency vci, propagate nearly perpendicular to the magnetic field (kz /k^ v1/kz nd) with a parallel drifting electron population (drift speed nd), where subscripts 1 and r indicate frequency in the frame of flowing ions and in the lab frame, respectively, and kz is the parallel component of the wavevector. A transition in phase velocity from 0 v1/kz nd to 0 > v1/kz > nd for a pair of IEDD eigenmodes is observed as the degree of in-homogeneity in the transverse E × B flow is increased in a magnetized plasma column. For weaker velocity shear, both eigenmodes are dissipative, i.e. in Landau resonance, with kz nd > 0. For stronger shear, both eigenmodes become reactive, with one's wavevector component kz remaining parallel, but with v1/kz > nd , and the other's wavevector component kz becoming anti-parallel, so that 0 > v1/kz . For both eigenmodes, the transition (1) involves a small frequency shift and (2) does not involve a sign change in the wave energy density, which is proportional to vr v1, both of which are previously unrecognized aspects of inhomogeneous energy-density driven waves

    An Experimental and Theoretical Study of the Variation of 4f Hybridization Across the La1-xCexIn3 Series

    Full text link
    Crystal structures of a series of La1-xCexIn3 (x = 0.02, 0.2, 0.5, or 0.8) intermetallic compounds have been investigated by both neutron and X-ray diffraction, and their physical properties have been characterized by magnetic susceptibility and specific heat measurements. Our results emphasize atypical atomic displacement parameters (ADP) for the In and the rare-earth sites. Depending on the x value, the In ADP presents either an "ellipsoidal" elongation (La-rich compounds) or a "butterfly-like" distortion (Ce-rich compounds). These deformations have been understood by theoretical techniques based on the band theory and are the result of hybridization between conduction electrons and 4f-electrons.Comment: 7 pages, 8 figure

    Electronic Structure of the Complex Hydride NaAlH4

    Full text link
    Density functional calculations of the electronic structure of the complex hydride NaAlH4 and the reference systems NaH and AlH3 are reported. We find a substantially ionic electronic structure for NaAlH4, which emphasizes the importance of solid state effects in this material. The relaxed hydrogen positions in NaAlH4 are in good agreement with recent experiment. The electronic structure of AlH3 is also ionic. Implications for the binding of complex hydrides are discussed.Comment: 4 pages, 5 figure
    corecore