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Abstract. Because of the implications for plasmas in the
laboratory and in space, attention has been drawn to in-
homogeneous energy-density driven (IEDD) waves that are
sustained by velocity-shear-induced inhomogeneity in cross-
field plasma flow. These waves have a frequencyωr in the lab
frame within an order of magnitude of the ion gyrofrequency
ωci , propagate nearly perpendicular to the magnetic field
(kz/k⊥ � 1), and can be Landau resonant (0< ω1/kz < νd )
with a parallel drifting electron population (drift speedνd ),
where subscripts 1 andr indicate frequency in the frame of
flowing ions and in the lab frame, respectively, andkz is the
parallel component of the wavevector. A transition in phase
velocity from 0 < ω1/kz < νd to 0 > ω1/kz > νd for a
pair of IEDD eigenmodes is observed as the degree of in-
homogeneity in the transverseE × B flow is increased in a
magnetized plasma column. For weaker velocity shear, both
eigenmodes are dissipative, i.e. in Landau resonance, with
kzνd > 0. For stronger shear, both eigenmodes become reac-
tive, with one’s wavevector componentkz remaining parallel,
but withω1/kz > νd , and the other’s wavevector component
kz becoming anti-parallel, so that 0> ω1/kz. For both eigen-
modes, the transition (1) involves a small frequency shift
and (2) does not involve a sign change in the wave energy
density, which is proportional toωrω1, both of which are
previously unrecognized aspects of inhomogeneous energy-
density driven waves.

1 Introduction

In recent experiments on Inhomogeneous Energy-Density
Driven (IEDD) waves (Ganguli et al., 1985; 1988; 1989;
Koepke et al., 1994; Amatucci et al., 1996; Gavrishchaka et
al., 1996), quantitative comparisons with theoretical predic-
tions were obtained (Koepke et al., 1995; 1998a; Amatucci
et al., 1998; Carroll et al., 1998; Peñano et al., 1998). Be-
yond verifying the existence of the excitation mechanism,
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these comparisons reinforced detailed aspects of the theoret-
ical model and also stimulated refinements and an expanded
awareness of the details of the model. This new knowledge
of how perpendicular-velocity shear substantially changes
plasma stability is being used to interpret recent observa-
tions of extremely low frequency waves in the auroral zone
of the ionosphere and magnetosphere (Kintner et al., 1996;
2000a; 2000b; Bonnell et al., 1996; Bonnell, 1997; Lund et
al., 1999; Hamrin et al., 2001; André et al., 2002). Here, we
report on aspects of the dispersion relation heretofore unpre-
dicted in the model.

Our work concentrates on IEDD waves, which are sus-
tained by velocity-shear-induced inhomogeneity in the wave
energy density. By creating in a magnetized plasma column a
localized region ofE ×B flow, we generate a perpendicular-
flow layer in which the electrons and ions drift together az-
imuthally with a common speedνE . ForEr > 0 andBz > 0,
we haveνθ = −νE . Here, “localized” means that the region
of elevated perpendicular drift velocity is narrow enough to
be considered separated from both the cylindrical axis and
the plasma’s radial edge. Electrostatic IEDD waves propa-
gate primarily in theE × B direction, have frequencies in a
wide range near the ion gyrofrequency, and are excited in
the cylindrical layer of perpendicular flow (Koepke et al.,
1998b). In space, IEDD waves are expected to grow at the
edges of auroral arcs where strong, small-scale electric fields
are found (Kelley and Carlson, 1977; Marklund et al., 1994;
Moore et al., 1996). Since it is a nonlocal mode, there is
a Doppler shift of1ω = |kθνE | between the real part of
the dispersion relation’s eigenfrequencyωr , which is influ-
enced by the entire velocity profile (i.e. not just the por-
tion where the shear is maximum), and the effective mode
frequencyω1 in the frame of theE × B drift. The radial
wavepacket that typically fills the localized flow layer con-
sists of multiple unstable eigenstates, each identifiable in the
spectra of frequency (Koepke et al., 1998a). If a parallel elec-
tron drift is present, some eigenmodes get Landau damped
and some Landau grow, but all have characteristics sensitive
to the velocity-shear parameters.
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The significance of ion-cyclotron waves lies in the effec-
tive particle acceleration resulting from the gyroresonant na-
ture of the interaction between these waves and the ions in
magnetized space plasma (Kintner et al., 1978; Mozer et al.,
1980). In the auroral acceleration zone, gyro-resonant wave-
particle interactions are believed to be responsible for the un-
expectedly large fraction of heavy ions of ionospheric origin
in the magnetosphere (Pollock et al., 1990).

Electrostatic ion-cyclotron (EIC) waves in the presence of
parallel electron current have been observed with a rocket
traversing an auroral arc (Bering, 1984). Ion beams and den-
sity gradients were ruled out as possible sources of free en-
ergy for the waves. Although the parallel current density, in-
ferred from magnetometer data, was 5µA/m2, the ratio of the
electron drift speed to the electron thermal speed was approx-
imately 0.002 (for 105 cm−3 plasma density and 0.1 eV elec-
tron temperature), far below the EIC-wave excitation thresh-
old in the absence of velocity shear. The possibility that the
current was carried by only a small fraction (less than 2%) of
the electron population was considered since, if fewer elec-
trons carry the current, the estimated drift velocity would ap-
proach the critical value for excitation. Perpendicular electric
fields (E⊥ ≈ 7 mV/m) were also observed (Robinson et al.,
1981) which may have contributed to the destabilization of
the waves.

Simultaneous observations of electrostatic hydrogen-
cyclotron waves and keV upstreaming ions were made with
the S3-3 satellite (Kintner et al., 1979). Electron drift was
considered as the possible driving mechanism for the waves.
However, the S3-3 magnetometer data indicated that the par-
allel current density was 0.2 A/m2, approximately 50% of the
estimated excitation threshold current density for EIC waves
in the absence of velocity shear. It was explained that this dis-
crepancy could be partially removed since the measurement
was averaged over a 300 km path length while the cyclotron
waves were observed in two bursts, each corresponding to
a 90 km path length. Numerous examples of perpendicu-
lar electrostatic shocks containing electrostatic ion-cyclotron
turbulence were seen by the S3-3 satellite at altitudes of
1000–8000 km with scale sizes ranging from 200 m to 10 km
(Torbert and Mozer, 1978). Shocks with smaller scale sizes
outnumbered those with large scale sizes. They define elec-
trostatic shocks as “confined spatial regions in which ex-
tremely large, dc electric fields are observed, and in which
abrupt discontinuities in plasma parameters, particle fluxes,
and waves properties often occur.” The shocks were typically
bordered by very-low-frequency (VLF) emitting regions, and
often occurred in regions of intense parallel, 100 eV electron
streams.

Sounding-rocket observations of broadband electrostatic
ion-cyclotron waves at the edge of an auroral arc in the
presence of perpendicular-velocity shear and magnetic-field-
aligned electron current have been reported by Kelley and
Carlson (1977). The relationship between the strong shear
and intense irregularities indicated that a velocity-shear
mechanism, unknown at the time of the original analysis op-
erated at wavelengths short in comparison with scale lengths

associated with the Kelvin-Helmholtz instability. Ganguli et
al. (1994) discuss a two-step process whereby large-scale
Kelvin-Helmholtz waves steepen nonlinearly to give rise
to localized vortical structures in electrostatic potential in
which IEDD waves can grow.

With the advent of higher sampling rates for rocket instru-
mentation, attention has been turned to using IEDD waves
for interpreting observations dynamically intense geomag-
netic activity at the highly structured edges of auroral arcs.
The ARCS-4 rocket detected sheared plasma flow, ion heat-
ing, and ion-cyclotron waves in an auroral arc (Moore et al.,
1996). The superthermal and highly variable plasma winds
were consistent with a highly structured dc electric field. The
rate of shear in the perpendicular plasma flow associated with
these structures was on the order of 5% of the oxygen gy-
rofrequency, large enough for the excitation and subsequent
dissipation of shear-driven waves to be considered as a pri-
mary ion heating mechanism.

Satellite measurements of perpendicular-velocity shear in
the auroral ionosphere are prevalent in the literature and
many of these reports are able to correlate the shear with
thermal-ion upwelling from the topside ionosphere. This cor-
relation would be expected if velocity shear excites waves
that heat ions as they flow from the ionosphere to the mag-
netosphere. Lu et al. (1992) were able to correlate directly
the velocity shear with thermal-ion upwelling by making
simultaneous observations with the DE-1 satellite at high
altitude (≥ 12 000 km) and the DE-2 satellite at low alti-
tude (≥ 800 km). DE-2, on its own, provided clear indi-
cations of broadband fluctuations associated with large ve-
locity shears, parallel electron current (generally well be-
low the anticipated ion-cyclotron wave-excitation threshold
in homogeneous plasma), and upward-flowing conic-shaped
ion energy distributions in the auroral F-region (Basu et al.,
1988). Thermal-ion upwellings were also observed by the
Hilat satellite in the dayside polar ionosphere where Tsun-
oda et al. (1989) report a strong correlation of ion heating
with shear in the convective velocity. These authors state
that shear in the perpendicular plasma flow is common to all
thermal-ion-upwelling observations and discuss the possibil-
ity that shear provides a substantial portion of the free energy
required to drive the process.

Sounding rocket data from SCIFER and AMICIST pro-
vide the best evidence yet of the identity of the waves respon-
sible for auroral ion energization. The SCIFER experiment
(Kintner et al., 1996) documented the microphysical signa-
tures of auroral outflow in the cleft-ion fountain, believed to
be the principal source of mass for the magnetosphere, espe-
cially O+, as the payload passed through several discrete au-
rora. SCIFER provided continuous spatial/temporal resolu-
tion two orders of magnitude better than that achieved by pre-
vious orbiting spacecraft and correlated one-to-one the struc-
tured perpendicular ion acceleration events with broadband,
low-frequency electric fields and plasma density depletions.
The AMICIST experiment (Bonnell et al., 1996; Lynch et
al., 1996) did the same thing with the nightside auroral oval
where the outflow is smaller but the physics appears to be the
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Fig. 1. Diagram of WVU Q Machine.

same. Kintner et al. (1996), Bonnell et al. (1996), and Bon-
nell (1997) identify IEDD waves as being responsible for the
ion acceleration. Bonnell (1997) shows that the wave inten-
sity and the level of velocity shear in the data increase and de-
crease synchronously, reinforcing the belief that the presence
of velocity shear is an essential element of the wave-particle
interaction process. Hamrin et al. (2001) compare Freja mea-
surements of BB-ELF waves with laboratory measurements
of IEDD waves and conclude that velocity shear plays an im-
portant role in the generation mechanism of BB-ELF waves.
In this paper, we report on a transition in the nature of the
mode, from being predominantly dissipative (i.e. driven by
electron current and modified by shear) to being predomi-
nantly reactive (i.e. driven by shear and modified by electron
current).

2 Experimental approach

The West Virginia University (WVU) Q machine (Rynn and
D’Angelo, 1960; Koepke et al., 1998b) produces quiescent,
steady-state, magnetized (0.5 T maximum,B = Bẑ) plasma
(diameter of 6.4 cm), with comparable electron and ion tem-
peratures (Te ≈ Ti ≈ 0.2 eV), densityn ≈ 1014

− 1017 m−3,
undisturbed plasma potentialVp0 ≈ −2 V, and base neutral

pressurePn < 10−7 Pa. Plasma density, electron tempera-
ture, and electron drifts are measured with current-collecting
Langmuir probes, whereas floating emissive probes are used
to measure plasma potential.

In the single-source configuration, shown in Fig. 1, a
segmented-disk end electrode is used to produce and control
the perpendicular plasma flow and the parallel electron drift
velocity (Carroll et al., 1994). Typical values achievable with
the segmented disk electrode in the WVU Q Machine are
νd/νte = 0.1(νd/νt i = 20) andνE/νte = 0.01(νE/νt i = 2),
whereνte(νt i) is the electron (ion) thermal speed. Fluctu-
ations in the current collected by the segmented disk elec-
trode have a spectrum nearly identical to the spectrum asso-
ciated with fluctuations in ion saturation current collected by
a Langmuir probe located at a similar radius anywhere along
the 3 m plasma column.

The disk electrode is made of five coplanar, concentric cir-
cular segments heated to prevent surface contamination. The
applied voltagesV0, V1, V2, V3, andV4 on the inner but-
ton segment (r ≤ 0.80 cm) and on the adjacent annular seg-
ments (0.90 cm≤ r ≤ 1.35 cm, 1.40 cm≤ r = 1.85 cm,
1.90 cm≤ r = 2.35 cm, 2.40 cm≤ r = 2.85 cm, respectively,
are set with independent power supplies. Here, we bias pos-
itively the inner two segments and electrically float the other
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Fig. 2. Transition inkz asB increases. The three lines guide the eye.
Square (circle) symbols correspond to the higher-frequency (lower-
frequency) spectral feature. The region of the plot associated with
values ofkz < 0 is identified as being in the predominantly reactive
regime. The seven square symbols along the top of the solid line and
the four circle symbols along the top of the dotted line are identi-
fied with the predominantly reactive regime. Other symbols having
kz > 0 are identified with the predominantly dissipative regime.
The triangle symbols correspond to a third feature appearing in the
wavevector spectrum for magnetic field strengths exceeding 1 kG.

segments.
To control the electron drift speed without significantly

changing the inhomogeneous transverse-velocity profile, the
bias of the hot plate is adjusted from its usualV = 0 condi-
tion. Raising the hot-plate bias while the disk-electrode bias
is positively biased reduces the electron drift speed, whereas
lowering the hot-plate bias while the disk-electrode is posi-
tively biased, increases the electron drift speed. The growth
rate γ of IEDD waves can be determined for a particular
value of drift speed by introducing a step in the parallel elec-
tron drift speed from just below the excitation threshold to
above the threshold and monitoring the subsequent exponen-
tial increase in the wave amplitude (Koepke et al., 1998b).
Experiments in a potassium plasma have confirmed that, for
dissipatively driven IEDD waves, the growth rate increases
with current.

The predictedνθ dependence of the mode frequencyωr in
the lab frame has been confirmed experimentally using both
single-eigenmode and double-eigenmode manifestations of
IEDD waves (Koepke et al., 1995; Carroll et al., 1998;
Pẽnano et al., 1998). In these cases,ωr is less than the
doppler-shifted frequencyω1 in the frame of the flow frame,
ωci < ω1 < 2ωci , and|ω1 − ωr | increases with increasing

νE . For the lowest-order radial eigenmode,ω1 is relatively
insensitive tokθνE so that askθνE increases,ωr can down-
shift from above to belowωci . For the higher radial eigen-
modes,ω1 increases more sensitively with increasingνE so
that ωr shifts less with increasingνE (Carroll et al., 1998).
Large values ofkθ or νE lead to small values of mode fre-
quency (e.g.ωr/ωci ≈ 0.3). For even larger values ofkθ

or νE , kθνE can exceedω1 so thatωr andω1 have opposite
signs and the observed mode frequency appears to increase
with increasingνE (Amatucci et al., 1996). Conceptually,
such a frequency upshift is actually a frequency downshift of
greater than 100%. The productωrω1 is proportional to the
wave energy density and havingωrω1 < 0 in the flow region
andωrω1 > 0 in the no-flow region provides the reactive free
energy. In this paper, we show that, for small values ofkθvi ,
IEDD waves can be reactively excited withoutωrω1 < 0 in
the flow region.

An array of two Langmuir probes, located at the same ra-
dius, is used to measurekθ andkz, the axial and azimuthal
components of the mode’s wavevector, from the dependence
of relative phase (between the two signals collected simul-
taneously by the probe tips) on the orientation of the probe
array with respect to thez direction. For travelling waves,
kθ = 1φ/(rp1θ) and kz = 1φ/(1z), where1φ is the
measured phase difference (in radians) between probe sig-
nals,rp is the radial position of the probe tips, and1θ and
1z are the azimuthal and axial separation of the probe tips.
Two arrays, oriented perpendicular to each other, allowed
azimuthal measurements of the phase (rp1θ = 3 mm) and
axial measurements of the phase (1z = 6.3 cm) to be ac-
quired simultaneously. This feature improves the assignment
of kθ andkz values to specific spectral features. The halo-tip
probe design (Koepke et al., 1999) increases radial resolu-
tion for a given signal level and decreases the perturbation
to the plasma. This design improvement was motivated by
the need for reliable wave propagation measurements in a
plasma containing multiple oscillatory eigenmodes that are
closely spaced in frequency, share similar three-dimensional
mode structure, and are localized in a radially narrow cylin-
drical shell of transverse flow radially separated from the
plasma column edge. The probe’s radially narrow collect-
ing area is supported by thin stalks from the main support
tube that surrounds the heating element.

The value ofkz helps identify the predominance of dissipa-
tive or reactive responses for a particular IEDD eigenmode.
In contrast to CDEIC waves, IEDD waves are observed with
an axial wavelength smaller than the length of the laboratory
plasma column in which they exist (Koepke et al., 1994). In
the case of multiple IEDD eigenmodes, each eigenmode can
have a different axial wavelength. Some may be predomi-
nantly dissipative and some may be predominantly reactive.
For predominantly dissipative eigenmodes in sodium, the ax-
ial component of the propagation is in the direction of the
electron drift, with

ω1/(kzνd) = (ωr + kθνE)/(kzνd)

≈ (1 + kθρiνE/νt i)ωci/((0.08 cm−1)(1 × 107 cm/s))
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Fig. 3. Probe-acquired spectra of(a) frequency,(b) kθ , and(c) kz for the reactively driven IEDD eigenmodes in Fig. 1 atB = 1.5 kG. Note
that the values ofkz for the two eigenmodes have different signs, indicating counter propagation alongz.

≈ (1 + (1.8 cm−1)(0.24 cm)(1)(2π)(60 kHz)/

(8 × 107 s−1))

≈ 0.7,

wherekz is the parallel component of the wavevector andνt i

is the ion thermal speed.

3 Resonant-to-nonresonant transition in phase velocity

Figure 2 shows the change inkz for a pair of IEDD eigen-
modes as the magnetic field strength is increased. The den-
sity is 3×1013 m−3, more than an order of magnitude smaller
than for our usual IEDD-wave experiments. The bias config-
uration isV0 = 10 V andV1 = 0 V, corresponding to a radi-
ally outward electric field. Electric-field measurements indi-
cate a peak value of 6 V/cm, corresponding toνE = 6νt i at
the highest value ofB. The mode frequency associated with
one eigenmode (square symbols in Fig. 2) is approximately
4% above the ion gyrofrequency atB = 0.8 kG and down-
shifts (relative toωci , which is also changing) to approxi-
mately 2% below the ion gyrofrequency atB = 1.5 kG. The
second eigenmode (circle symbols in Fig. 2) downshifts from
20% above to 3% above the gyrofrequency over the same
range of magnetic-field strength. Thekz value of the larger-
frequency eigenmode shifts from 0.08 cm−1 to 0.03 cm−1 in
the first half of the range inB. Thekz value of the smaller-
frequency eigenmode shifts from 0.05 cm−1 to −0.025 cm−1

in the first third of the range ofB. The values ofkθ for
both eigenmodes are relatively small and essentially the same
(kθ = 0.85 cm−1). At the higher values ofB, a third feature
(triangle symbols in Fig. 2) appears at a frequency located

between the original two eigenmodes, unlike the dissipative
cases (Koepke et al., 1998a), where new eigenmodes always
appeared at frequencies higher than the previously existing
eigenmodes. In comparing the behavior of these eigenmodes
to the dissipative eigenmodes just mentioned, it should be
noted that (kθρi)

2 is at least a factor of four smaller in the
case reported here.

These changes inkz correspond to changes in phase ve-
locity and thus have consequences for labeling these eigen-
modes as predominantly dissipative or reactive. At smallB,
both eigenmodes are Landau resonant with the drifting elec-
trons. That is to say the parallel phase velocity is aligned with
and is less than the parallel drift of electrons. At higherB,
both eigenmodes become non-resonant, with one’s wavevec-
tor component remaining parallel and the other’s component
becoming anti-parallel.

A wavenumber spectrum consists of the real (FFT ampli-
tude) and imaginary (FFT phase1φ) arrays resulting from
a cross-correlation analysis, and is displayed by plotting the
former vs. the latter. A line is used to connect the data in the
frequency spectrum, whereas each datum in thekθ spectrum
is represented by a bar with height equal to FFT amplitude
and horizontal position equal tokθ . As experimental param-
eters are varied, changes in the dissipative and reactive na-
ture of individual eigenmodes within a group of eigenmodes
can be followed conveniently by monitoring such akθ spec-
trum. Figure 3 shows the frequency spectrum, thekθ spec-
trum, and thekz spectrum for the two eigenmodes in Fig. 2
atB = 1.5 kG, i.e. in the reactive regime.

The parallel phase velocity of the higher-frequency eigen-
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Fig. 4. Contour plot of fluctuation amplitude versus frequency for
0 < V0 < 37.5 V and V1 = 0 V at B = 1.5 kG as measured on
a Langmuir probe in sodium plasma. Each set is an average of 4
realizations. Two spectral features are evident, both upshifting with
increasingV0. The ion gyrofrequency is 70 kHz.

mode is parallel to the electron drift with

ω1/(kzνd) = (ωr + kθνE)/(kzνd)

≈ (1 + kθρiνE/νt i)ωci/[(0.02 cm−1)(1 × 107 cm/s)]

≈ (1 + (0.8 cm−1)(0.15 cm)(1)(2π)(104 kHz)/

(2 × 107 s−1)

≈ 3.5.

The parallel phase velocity of the lower-frequency eigen-
mode is antiparallel to the electron drift, with

ω1/(kzνd) = (ωr + kθνE)/(kzνd)

≈ (1 + kθρiνE/νt i)ωci/((−0.02 cm−1)(1 × 107 cm/s))

≈ (1 + (0.65 cm−1)(0.15 cm)(1)(2π)(100 kHz)/

(−2 × 107 s−1))

≈ −3.5.

These eigenmodes upshift with increasingνE , as shown in
Fig. 4. Initially located at 66 kHz (0.94ωci) and 73 kHz
(1.03ωci), they upshift to 70 kHz (1.00ωci) and 81 kHz
(1.14ωci) as the biasV0 is increased. Electric field measure-
ments indicate values of 6 V/cm, corresponding toνE = 6νt i

at highV0.

4 Discussion

These eigenmodes survive even when the parallel electron
drift drops below 1% of the electron thermal speed, i.e. when
the parallel electron current is essentially eliminated, as ex-
pected for waves driven by the reactive response of the IEDD
wave-excitation mechanism. Sinceω/kzνd > 1 for the
higher-frequency eigenmode andω/kzνd < 0 for the lower-
frequency eigenmode, inverse Landau damping is not desta-
bilizing the waves. The only other laboratory observation
of spontaneously excited, electrostatic ion-cyclotron waves
propagating antiparallel to the electron drift direction is the
ion-beam-driven waves reported by Hauck et al. (1978), but
in this case the wave frequency normalized to the ion gy-
rofrequency does not upshift with experimental parameters.

The amplitude of these non-resonant eigenmodes is not
sensitive to the relative bias between the hot-plate the disk-
electrode, as is the amplitude of the dissipative eigenmodes,
implying that, as expected for predominantly reactive eigen-
modes, they do not tap the free energy available in the par-
allel electron drift. Consequently, the stepped-bias technique
for measuring growth rate is not applicable to the predomi-
nantly reactive IEDD eigenmodes and a subcritical value of
ionizer bias could not be found.

The small values ofkθ result in small values of (kθρi)
2

≈

0.04 and small Doppler shifts 0.2ωci for νE/νt i ≈ 1.
Whereas the Doppler shift is typically greater than 1.5ωci

in previous reports of upshifting IEDD waves (Amatucci et
al., 1996; 1998), the maximum Doppler shift here is 0.2ωci .
Measurements indicate thatω1 is less thanωci and in the
neighborhood of 0.9ωci , as estimated from 1.14ωci −0.2ωci .
We know thatωrω1 is a positive quantity in the limit of zero
νE . We know thatωrω1 does not change sign during the tran-
sition by virtue of (∂ω1/∂νE)νE , (∂ωr/∂νE)νE , andkθνE all
being much less thanω1. Thus,ωrω1 > 0 for both eigen-
modes throughout the transition, even when the eigenmodes
are predominantly reactive.

These results can be explained using aspects of inhomo-
geneous energy-density driven waves. Specifically, two re-
active roots of the dispersion condition were found that had
∂ωr/∂νE > 0, consistent with the observed upshift. How-
ever, the predicted growth rate is near zero (marginally sta-
ble) for a wide range ofνE values. For these eigenmodes,
ω1 < ωci and∂ω1/∂νE < 0 so that askθ increases, the cy-
clotron damping decreases, consistent with the appearance
of these modes. A thorough analysis of the dispersion con-
dition confirms that predominantly reactive eigenmodes with
ωrω1 > 0 are possible, as the experiment demonstrates. An
important point that can be made regarding the experimental
observation of these eigenmodes is that the previous crite-
ria identifying a predominantly reactive eigenmode should
be modified so that cases in whichωrω1 > 0, usually iden-
tified as predominantly dissipative, are not excluded. Since
the value of(kθρi)

2 is so small for these observed predomi-
nantly reactive eigenmodes, the usual expansions in the dis-
persion function are not valid. Recall that the comparison of
phase velocity with electron drift velocity remains the pri-
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mary distinction between predominantly dissipative and pre-
dominantly reactive eigenmodes.

5 Conclusion

A resonant to non-resonant transition in phase velocity is ob-
served, corresponding to a transition from waves predomi-
nantly driven by the dissipative response of the IEDD mecha-
nism to waves predominantly driven by the reactive response
of the IEDD mechanism. Becauseωrω1 > 0 throughout
the transition for one of the eigenmodes, this transition in
phase velocity reflects unique aspects of IEDD waves com-
pared to previous observations of IEDD waves. The fact
that IEDD waves were observed counter-propagating along
the magnetic field in the presence of a significant electron
drift, means not only that the electron drift is not the primary
source of free energy for these eigenmodes, but that these
eigenmodes are robust to significant electron Landau damp-
ing. These results demonstrate that sheared plasma flow can
play a dominant role in the generation of ion-cyclotron waves
for conditions previously viewed as being incompatible with
ion-cyclotron waves. The ramifications of these results ex-
tend to the interpretation of broadband and narrowband elec-
trostatic ion-cyclotron waves in the ionosphere and magne-
tosphere where inhomogeneities in the perpendicular plasma
flow is known to exist.
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