496 research outputs found
Exact closed form analytical solutions for vibrating cavities
For one-dimensional vibrating cavity systems appearing in the standard
illustration of the dynamical Casimir effect, we propose an approach to the
construction of exact closed-form solutions. As new results, we obtain
solutions that are given for arbitrary frequencies, amplitudes and time
regions. In a broad range of parameters, a vibrating cavity model exhibits the
general property of exponential instability. Marginal behavior of the system
manifests in a power-like growth of radiated energy.Comment: 17 pages, 7 figure
Polyethylene wear of dual mobility cups: a comparative analysis based on patient-specific finite element modeling.
Concerns remain about potential increased wear with dual mobility cups related to the multiple articulations involved in this specific design of implant. This finite element analysis study aimed to compare polyethylene (PE) wear between dual mobility cup and conventional acetabular component, and between the use of conventional ultra-high molecular weight PE (UHMWPE) and highly cross-linked PE (XPLE).
Patient-specific finite element modeling was developed for 15 patients undergoing primary total hip arthroplasty (THA). Five acetabular components were 3D modeled and compared in THA constructs replicating existing implants: a dual mobility cup with a 22.2-mm-diameter femoral head against UHMWPE or XLPE (DM22PE or DM22XL), a conventional cup with a 22.2-mm-diameter femoral head against UHMWPE (SD22PE) and a conventional cup with a 32-mm-diameter femoral head against UHMWPE or XLPE (SD32PE or SD32XL).
DM22PE produced 4.6 times and 5.1 times more volumetric wear than SD32XL and DM22XL (p < 0.0001, Cohen's d = 6.97 and 7.11; respectively). However, even if significant, the differences in volumetric wear between DM22XL and SD32XL as well as between DM22PE and SD22PE or SD32PE were small according to their effect size (p < 0.0001, Cohen's |d|= 0.48 to 0.65) and could be therefore considered as clinically negligible.
When using XLPE instead of UHMWPE, dual mobility cup with a 22.2-mm-diameter femoral head produced a similar amount of volumetric wear than conventional acetabular component with a 32-mm-diameter femoral head against XLPE. Therefore, XLPE is advocated in dual mobility cup to improve its wear performance
Analgesic efficacy of selective tibial nerve block versus partial local infiltration analgesia for posterior pain after total knee arthroplasty: a randomized, controlled, triple-blinded trial.
The adductor canal block provides pain relief on the anterior aspect of the knee after arthroplasty. Pain on the posterior aspect may be treated either by partial local infiltration analgesia of the posterior capsule or by a tibial nerve block. This randomized, controlled, triple-blinded trial tests the hypothesis that a tibial nerve block would provide superior analgesia compared to posterior capsule infiltration in patients scheduled for total knee arthroplasty under spinal anesthesia with an adductor canal block.
Sixty patients were randomized to receive either infiltration of the posterior capsule by the surgeon with ropivacaine 0.2%, 25 mL, or a tibial nerve block with 10 mL of ropivacaine 0.5%. Sham injections were performed to guarantee proper blinding. The primary outcome was intravenous morphine consumption at 24 h. Secondary outcomes included intravenous morphine consumption, pain scores at rest and on movement, and different functional outcomes, measured at up to 48 h. When necessary, longitudinal analyses were performed with a mixed-effects linear model.
The median (interquartile range) of cumulative intravenous morphine consumption at 24 h was 12 mg (4-16) and 8 mg (2-14) in patients having the infiltration or the tibial nerve block respectively (p = 0.20). Our longitudinal model showed a significant interaction between group and time in favor of the tibial nerve block (p = 0.015). No significant differences were present between groups in the other above-mentioned secondary outcomes.
A tibial nerve block does not provide superior analgesia when compared to infiltration. However, a tibial nerve block might be associated with a slower increase in morphine consumption over time
Natural Gas as a Fuel Option for Heavy Vehicles
The U.S. Department of Energy (DOE), Office of Heavy Vehicle Technologies (OHVT) is promoting the use of natural gas as a fuel option in the transportation energy sector through its natural gas vehicle program [1]. The goal of this program is to eliminate the technical and cost barriers associated with displacing imported petroleum. This is achieved by supporting research and development in technologies that reduce manufacturing costs, reduce emissions, and improve vehicle performance and consumer acceptance for natural gas fueled vehicles. In collaboration with Brookhaven National Laboratory, projects are currently being pursued in (1) liquefied natural gas production from unconventional sources, (2) onboard natural gas storage (adsorbent, compressed, and liquefied), (3) natural gas delivery systems for both onboard the vehicle and the refueling station, and (4) regional and enduse strategies. This paper will provide an overview of these projects highlighting their achievements and current status. In addition, it will discuss how the individual technologies developed are being integrated into an overall program strategic plan
Exact solution for the energy density inside a one-dimensional non-static cavity with an arbitrary initial field state
We study the exact solution for the energy density of a real massless scalar
field in a two-dimensional spacetime, inside a non-static cavity with an
arbitrary initial field state, taking into account the Neumann and Dirichlet
boundary conditions. This work generalizes the exact solution proposed by Cole
and Schieve in the context of the Dirichlet boundary condition and vacuum as
the initial state. We investigate diagonal states, examining the vacuum and
thermal field as particular cases. We also study non-diagonal initial field
states, taking as examples the coherent and Schrodinger cat states.Comment: 10 pages, 8 figure
The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae.
A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb.) Franco (Coastal Douglas-fir) is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp). Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms
Vibrating Cavities - A numerical approach
We present a general formalism allowing for efficient numerical calculation
of the production of massless scalar particles from vacuum in a one-dimensional
dynamical cavity, i.e. the dynamical Casimir effect. By introducing a
particular parametrization for the time evolution of the field modes inside the
cavity we derive a coupled system of first-order linear differential equations.
The solutions to this system determine the number of created particles and can
be found by means of numerical methods for arbitrary motions of the walls of
the cavity. To demonstrate the method which accounts for the intermode coupling
we investigate the creation of massless scalar particles in a one-dimensional
vibrating cavity by means of three particular cavity motions. We compare the
numerical results with analytical predictions as well as a different numerical
approach.Comment: 28 pages, 19 figures, accepted for publication in J. Opt. B: Quantum
Semiclass. Op
YeATS - a tool suite for analyzing RNA-seq derived transcriptome identifies a highly transcribed putative extensin in heartwood/sapwood transition zone in black walnut [version 2; referees: 3 approved]
The transcriptome provides a functional footprint of the genome by enumerating the molecular components of cells and tissues. The field of transcript discovery has been revolutionized through high-throughput mRNA sequencing (RNA-seq). Here, we present a methodology that replicates and improves existing methodologies, and implements a workflow for error estimation and correction followed by genome annotation and transcript abundance estimation for RNA-seq derived transcriptome sequences (YeATS - Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). A unique feature of YeATS is the upfront determination of the errors in the sequencing or transcript assembly process by analyzing open reading frames of transcripts. YeATS identifies transcripts that have not been merged, result in broken open reading frames or contain long repeats as erroneous transcripts. We present the YeATS workflow using a representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone in black walnut. A novel feature of the transcriptome that emerged from our analysis was the identification of a highly abundant transcript that had no known homologous genes (GenBank accession: KT023102). The amino acid composition of the longest open reading frame of this gene classifies this as a putative extensin. Also, we corroborated the transcriptional abundance of proline-rich proteins, dehydrins, senescence-associated proteins, and the DNAJ family of chaperone proteins. Thus, YeATS presents a workflow for analyzing RNA-seq data with several innovative features that differentiate it from existing software
- …