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Abstract

The transcriptome provides a functional footprint of the genome by
enumerating the molecular components of cells and tissues. The field of
transcript discovery has been revolutionized through high-throughput mMRNA
sequencing (RNA-seq). Here, we present a methodology that replicates and
improves existing methodologies, and implements a workflow for error
estimation and correction followed by genome annotation and transcript
abundance estimation for RNA-seq derived transcriptome sequences (YEATS -
Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). A unique
feature of YeATS is the upfront determination of the errors in the sequencing or
transcript assembly process by analyzing open reading frames of transcripts.
YeATS identifies transcripts that have not been merged, result in broken open
reading frames or contain long repeats as erroneous transcripts. We present
the YeATS workflow using a representative sample of the transcriptome from
the tissue at the heartwood/sapwood transition zone in black walnut. A novel
feature of the transcriptome that emerged from our analysis was the
identification of a highly abundant transcript that had no known homologous
genes (GenBank accession: KT023102). The amino acid composition of the
longest open reading frame of this gene classifies this as a putative extensin.
Also, we corroborated the transcriptional abundance of proline-rich proteins,
dehydrins, senescence-associated proteins, and the DNAJ family of chaperone
proteins. Thus, YeATS presents a workflow for analyzing RNA-seq data with
several innovative features that differentiate it from existing software.
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(iZ757:3 Amendments from Version 1

In this version, we have
1) Added two new authors based on their inputs to the manuscript
2) Provided IDs to the submissions of the transcriptome(s).

3) Created github repository with README. It is to be noted that
this is not meant to be a software article, so the software provided
is not release quality. https://github.com/sanchak/YEATSCODE1

4) Incorporated several minor points raised by reviewer.
See referee reports

Introduction

Analysis of the complete set of RNA molecules in a cell, the tran-
scriptome, is critical to understanding the functional aspects of the
genome of an organism. Most transcripts get translated into proteins
by the ribosome'. Non-translated transcripts (noncoding RNAs)
may be alternatively spliced and/or broken into smaller RNAs, the
importance of which have only recently been recognized’. Tran-
scriptional levels vary significantly based on environmental cues®,
and/or disease’. Quantifying transcriptional levels constitutes an
important methodology in current biological research. Traditional
methods like RNA:DNA hybridization’ and short sequence-based
approaches® have been supplanted recently by a high-throughput
DNA sequencing method - RNA-seq’*. Concomitant with the intro-
duction of RNA-seq has been the development of a diverse set of
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computational methods for analyzing the resultant data’'.

In the current work, we present a methodology for analyzing
RNA-seq data that has been assembled into transcripts (YeATS - Yet
Another Tool Suite for analyzing RNA-seq derived transcriptome).
The process of associating genomic open reading frames (ORF) to
a set of transcripts (transcriptome) is the key step in YeATS, ena-
bling identification and correction of specific errors arising from
sequencing and/or assembly, a novel feature missing in most known
tools. These errors include transcripts that have not been merged,
a transcript having broken ORFs and transcripts containing long
repeats. Also, YeATS identifies noncoding RNAs by comparison to
compiled databases™, transcripts with multiple coding sequences
and highly transcribed genes (based on simple normalization of raw
counts followed by sorting).

Here, the YeATS workflow is demonstrated using a representa-
tive sample of the transcriptome from the tissue at the heartwood/
sapwood transition zone in black walnut (Juglans nigra L.). We
have identified transcripts that have sequencing and/or assembly
errors (~5%). A novel feature that emerged from our analysis was
the presence of a highly transcribed gene that had no known homol-
ogous counterpart in the entire BLAST database. The amino acid
composition of the longest open reading frame of this gene consists
of a high percentage of leucine, histidine and valine, and classi-
fies this as a putative extensin*. Given the economic and ecological
importance of black walnut timber, characterization of such genes
will enhance our understanding of the mechanisms underlying the
unique properties associated with the wood of these trees™. The
significance of proline-rich proteins®™, dehydrins®, senescence-
associated proteins’’ and DNAJ* proteins to the formation of heart-
wood was established through their transcriptional abundance.
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Finally, based on transcripts that have no known homologs, we
have identified noncoding RNAs by comparison with the noncod-
ing RNA database for Arabidopsis®. Thus, in the current work, we
present a workflow (YeATS) with several novel features absent in
most currently available software.

Methods

In silico methods

The input to YeATS is a set of post assembly transcripts as a fasta
file (@) The first step is to identify the set of genes (proteins)
encoded by @,,.. This is done by associating a proper open reading
frame (ORF) to each transcript. This involves a comprehensive
automated BLAST run”.
For each transcript in ¢, we generate the three longest ORFs
(using the ‘getorf’ utility in the EMBOSS suite™) (Figure 1).
These three ORFs are BLAST ed to the full non-redundant protein
sequences (‘nr’) database. For a given E-value cutoff (1E-12 in the
current work), we create four sets

1. Only one ORF is less than the cutoff - the transcript is uniquely
annotated.

2. None of the ORFs is less than the cutoff - the transcript has no
known homologs.

‘ getorf
. 3 longest ORFs
\

Significant no
Matches?

Unannotated

[ Unique gene |—

multiple

Map to the
same gene?

Figure 1. Flowchart for YeATS. For each transcript, the three longest
open reading frames (ORF) are obtained using the ‘getorf’, and
these were BLAST ed to the full non-redundant protein sequences
(‘nr’) database. Based on the number of significant matches, the
transcriptome is partitioned. Unique genes have only one significant
match, erroneous transcripts have multiple ORFs matching the same
gene, while duplicate genes have multiple distinct matches.
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3. More than one ORF is less than the cutoff.

(a) The ORFs map to different fragments of the same protein.
This points to an error in the sequencing or the assembly,
which breaks down the contiguous ORF into two fragments.

(b) The ORFs map to different proteins - these are instances
of a transcript having two valid ORFs. We duplicate the
transcript, associating each one to a different protein
sequence.

To produce the uniquely annotated set of genes, we ignored entries
with the keywords chromosome, hypothetical, unnamed, unknown
and uncharacterized, in order to have a functional characteristic in
the annotation, provided the final annotated entry has low E-value.
Also, apart from comparing E-values, we also compare the BLAST
score, choosing an ORF as unique if its BLAST score was more
than twice any other BLAST score, even if other scores satisfied
the E-value criteria.

Algorithm 1 describes the process of merging transcripts (SI
Figure 1). For a given length (which varies from 5 to 15 in this
case), the 5” and 3’ sequences and identifiers of each transcript
are stored in new string databases: 3’=Begin; 5’=End. Repetitive
strings (strings that have only two letters) are ignored, as it is dif-
ficult to ensure their uniqueness. For each string of n length in the
Begin (3’) string database, we find whether: a) unique matches of

Algorithm 1. MergeTRS - Merge two transcripts

Input: ¢ < Set of transcripts
Output: ¢, ....: Pairs of transcripts that can be merged
begin

¢TRSMEFJGED < O;

while NewStatesAdded do

foreach TRS. in ¢,.. do
¢EEG/N &= O’

¢END &= O'
foreach /en:5..15 do

AddBeginingofTRS(

AddEndofTRS(

end

¢BEG/N’ TRS/ ! /en);
Berpr TAS,, lEN);
foreach string; in ¢, do
/* ignore strings that have less than 3 letters, these are
repetitive*/
IgnoreRepeats(string,);
if(3 only one string; in @.\p) SUch that prefixof(TRS) ==
prefixof( TFs’S/ ))[
¢TRSMERGED <
AddtoMergeableSet( THS,,THS/);
]
end
end
end

return ¢THSMERGED;

end
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n length (one-to-one mapping) are present in the End (5’) string
database and b) that the prefixes (initial transcript identifiers) of the
transcripts are the same.

Algorithm 2 describes the iterative method for identifying homolo-
gous genes in the genome based on the transcriptome. First, the
transcriptome is converted to a set of protein sequences by choos-
ing the appropriate ORF (described above) as the representative
protein sequence, and a BLAST database (TRSDB) is created. An
input protein sequence (possibly from another organism) of a gene
of interest is used to query TRSDB using BLAST®. This results in
a set of significant transcript matches which is pruned based on a
cutoft identity (40% in this case) and the criterion that the sequence
length should not differ more than another parameterizable value

Algorithm 2. FindGene - Iterative method to identify homologous
genes based on the transcriptome

Input: G & Amino acid sequence of gene

Input: TRSDB < BLAST database of the protein sequences
from each transcript, choosing the longest ORF as the
representative protein sequence

Input: identitycutoff < Ignore matches which are less than
identitycutoff % identical to the sequence under
consideration

Input: /engthcutoff < Ignore matches where the sequence length
differs by more than lengthcutoff % from the sequence under
consideration

Output: ¢

genes
begin
Poenes < G
Wersmeees =@
NewStatesAdded « 1;
while NewStatesAdded do
NewStatesAdded « 0;

foreach G, in such that G, is not in

¢genes

1) do
processed

«— G;

¢processed i

(p,.“‘“" = BLAST G, on TRSDB;

foreach TRS, in ¢/“**" do
difflength <
length(G) — length(TRS) ;
if(identity(TRS, G) > identitycutoff
(difflength < lengthcutoff)) [
NewStatesAdded « 1;

« TRS;

¢genes

]

end
end
end
/* This is not a TRS, but an input - remove this from the set*/
remove G from ¢,

return ¢

genes’

end
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(50 in this case). Both these transcripts are now potential genes, and
the above mentioned process is repeated for each of them, until no
new transcripts are added.

The raw counts for each transcript is normalized according to
Equation 1, assuming a read length of 100.

Score

normal

=100 * [Score, /(Length(transcript))]; (1)

The sequence alignment was done using ClustalW*'. The alignment
images were generated using SeaView™”.

The runtimes for most of the processing required in YeATS is a few
hours on a simple 16 GB, 16-core machine, barring the search for
homologies in the BLAST ‘nr’ database. This search can be sig-
nificantly accelerated when the organism under investigation has
well-annotated protein databases (as in the current case), much in
lines of the newly introduced SMARTBLAST (http://blast.ncbi.
nlm.nih.gov/smartblast/), to runtimes under a day.

In vitro methods

Total RNA was isolated from the xylem region immediately external
to the heartwood of a 16 year-old black walnut. The tree was felled
in November, cross sections about 1 inch thick were taken from the
base and dropped immediately into liquid nitrogen. After the sec-
tions were fully frozen they were transported to the lab on dry ice.
The transition zone was then chiseled and the xylem was ground
using a freezer mill. The RNA was extracted from 100g of ground
wood using lithium chloride extraction buffer, and subsequently
treated with DNAse (to remove genomic DNA) using an RNA/
DNA Mini Kit (Qiagen, Valencia, CA) per the manufacturers pro-
tocol. Presence of RNA was confirmed by running an aliquot on an
Experion Automated Electrophoresis System (Bio-Rad Laborato-
ries, Hercules, CA).

The cDNA libraries were constructed following the Illumina
mRNA-sequencing sample preparation protocol (Illumina Inc., San
Diego, CA). Final elution was performed with 16 ul. RNase-free
water. Each library was run as an independent lane on a Genome
Analyzer II (Illumina, San Diego, CA) to generate paired-end
sequences of 85bp in length from each cDNA library.

Prior to assembly, all reads underwent quality control for paired-
end reads and trimming using Sickle*’. The minimum read length
was 45bp with a minimum Sanger quality score of 35. The quality
controlled reads of 19 libraries from J. regia were de novo assem-
bled with Trinity v2.0.6'* (standard parameters with minimum
contig length of 300bp) (manuscript in submission, bioproject id
PRINA232394). Subsequently, the reads from the TZ from J. nigra
was aligned to this transcriptome and counts obtained by BWA’s
short read aligner v.0.6.2 (‘bwa aln’) (http://bio-bwa.sourceforge.
net/)*. The Illumina reads for the transition wood transcriptome can
be accessed at http://www.ncbi.nlm.nih.gov/sra/SRX404331.

Results

The input dataset to the YeATS tool was a set of transcripts, tran-
script identifiers and their corresponding raw counts (see Supporting
information), obtained from the tissue at the heartwood/sapwood
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transition zone (TZ) in black walnut (Juglans nigra L.) (Figure 2).
These raw counts were normalized (see Methods), and transcripts
with zero counts were ignored (see rawcounts.normalized.TZ in
Dataset 1). There were ~24K such transcripts (@,7,..,.) -

Dataset 1. YeATS Dataset
http://dx.doi.org/10.5256/f1000research.6617.d49730

README
FASTADIR.tgz : 24k transcripts

ORFS.tgz : open reading frames from 24k transcripts computed
from the ‘getorf’ tool from the Emboss suite.

list. merged.txt : transcripts that have been merged based on
overlapping ends

High.TZ.genome.annotated.csv : transcripts having only one ORF
with a high significance match

Lower.TZ.genome.annotated.csv : transcripts having only one ORF
with a lower significance match

TZ.genome.annotated.none.csv : transcripts with no match

TZ.genome.errors : transcripts which have two ORFs matching with
high significance to the same gene

TZ.genome.annotated.morethanone.csv : transcripts having
more than one ORFs which match to different genes with high
significance

rawcounts. TZ: Raw counts
rawcounts.normalized.TZ: Normalized counts

In order to associate a transcript to a specific open reading frame
(ORF), the ORFs of ¢,T,§m,ip, is obtained using ‘getorf’ from
the Emboss suite” (see ORFS.tgz in Supporting information)
(Figure 1). The three longest ORFs for each transcript is BLAST ed

Figure 2. Heartwood/sapwood transition zone in black walnut. A
cross section of a mature black walnut (Juglans nigra) stem showing
the light-colored sapwood (Secondary xylem), darkly colored
heartwood which contains no living cells. The transition zone (TZ) is
immediately external to the heartwood highlighted by the yellow line
in the red box. Cell death is actively occurring in this TZ tissue.
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to the full non-redundant protein sequences (‘nr’) database, and the
results were used to characterize the genes.

There were ~1200 transcripts that had possible sequencing or
assembly errors, ~22K transcripts that had significant matches
(E-value<E-12) in the ‘nr’ database, 113 transcripts that had lower
matches (E-12<E-value<E-08) in the ‘nr’ database, ~700 transcripts
that had no matches in the ‘nr’ database and about 200 transcripts
that could be merged based on overlapping amino acid sequences.
We describe these in detail below.

Possible sequencing error or mis-assembly of transcripts

We observed transcripts that had multiple ORFs that matched to
the same gene with high significance (E-value<E-10). The pos-
sibility that such an occurrence is not an experimental artifact is
low. Transcript C15259_G1_I1 is one such example, having two
ORFs - ORF_36 (length = 144) and ORF_9 (length = 122), both
of which match to the mitochondrial ATP-dependent Clp protease
proteolytic subunit 2*° (GenBank: CAN64666.1) from Vitis vinifera
with E-values of 6E-92 and 7E-45, respectively. Figure 3 shows the
alignment of these two ORFs to the Vitis vinifera protein indicated

F1000Research 2015, 4:155 Last updated: 05 APR 2017

the possible site of the sequencing error or transcript misassembly.
This aspect of the YeATS methodology can be used to estimate the
sequencing and transcript assembly error rate. For example, in the
current transcriptome of the walnut TZ, we found a 5% (1200 out
of 24,000) error rate.

Long repeat within the same transcript

A small number of transcripts had long repeats (on the reverse strand),
as identified by transcripts that had multiple identical ORFs. For
example, transcript C50369_G5_I2 has two ORFs (length = 143) that
matched to an uncharacterized protein (Uniprot id: XP_009362671,
E-value= 4e-13). These ORFs were located on the reverse strand,
and were exactly the same (Figure 4). There were only 8 such cases.

Merging transcripts

About ~200 transcripts have been merged using conservative met-
rics by YeATS (see Methods, list.merge in Supporting information).
For example, transcripts C55368_G1_I3 and C55368_G2_I1 were
merged based on a stretch of 12 amino acids (NFDENRGALNSH)
(Figure 5). The indicated single nucleotide difference might be the
reason for the failure of the assembly program to merge these two

CAN64666. 1
C15259 Gl _I1.ORF 9;

CAN64666.1

yrrneoss masasaarss accepsml ISTSTASIE MImMSSRcr moTons

61
1555 6i 11.0ne o; | ERMICINGE ISDISHAN RORMSRRSEY oR-Beliven - S s

121
CAN64666.1

C15259 G1_TI1.ORF 9;

1
CAN64666.1

IPIIIIIIII IlIIII‘I!-IIIIIIIII PNATIMIHQP

81
VWDSENALYA KHTGOSEDIT

C15259 G1_TI1.ORF 9;

241
CAN64666. 1
C15259 G1_I1.ORF 9;

CAN64666. 1
C15259 G1_I1.ORF 36;

illlllll!! IPMVIEHSSR

ror spot

CAN64666.1

/

61

CIR558 G omr g, Do ooy oSy HRSFANTICH COMSHASE ESACTRCERN
121 .

15585, 61 x1.oe_36; §rSa3iSaon KWTIHTROD VRWDSENAL FIORDRDY
181

C15955 G171, ore_36; [MEDRANEN GREDEVEDEN PUMMOANG NSCHDHCSSN U

Figure 3. Error detection in sequencing or transcript assembly by YeATS. Transcript C15259_G1_I1 has two ORFs - 9 and 36 - both of
which match to the mitochondrial ATP-dependent Clp protease proteolytic subunit 2, mitochondrial (GenBank: CAN64666.1) from Vitis vinifera
with E-values of 6E-92 and 7E-45, respectively. It is likely that the error occurred near the amino acid sequence ‘SAG’ marked in the figure.
The current transcriptome of the walnut TZ had a 5% (1200 out of 24,000) error rate for this class of error.

CAN64666.1

CAN64666.1
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181
C50369 G5 I2 B
C50369 G5 12 A rev CGEBBBCCES BECEENCENC CGECENCECE NGEACCGCON BGGERNACCH CHACCEANCE

241

C50369 G5 _I2 B — GG C ICRC ci G

C50369_G5_I2 A rev GG C CHCH C G

0369 2 30

C5 G5 I2 B d CElC

303657 G5 T2 A rev Recdidic: I IC-l B Saicli
361

C50369 G5 12 B CEG]

C50369 G5 12 A rev G GCac]
421

C50369 G5 I2 B q

C50369 G5 I2 A rev G
481

C50369 G5 I2 B C € €

C50369 G5 I2 A rev (C GG
541

C50369 G5 12 B G CBC C

C50369 G5 12 A rev G liC c
601

C50369 G5 I2 B G G C G

C50369 G5 12 A rev g JAC C e
661

C50369 G5 I2 B CAERCGEEC G GEA GEC

30369765 12 A rev A sl i
721

C50369 G5 I2 B GIlC G

30369765 15 A rev NN ool CAA [ &
781

C50369 G5 I2 B GCG
C50369 G5 T2 A rev C

Q)

G

Figure 4. Erroneous transcripts with an exact long repeat (on the reverse strand). Transcript C50369_G5_I2 had an ORF (length = 143,
Uniprot id: XP_009362671, uncharacterized protein), with an exact match on the reverse strand. There were only eight such cases, and they
could be manually corrected.

961
C55368 G1 I3.0ORF 59; G ;
C55368_G2_I1.ORF 23; ————— G IGGSWRTONE ISPAGKHAMS
(a)
1
C55368 Gl 1I3; ] G
CBee ) s RAGHCY RIS M JEE S
71
C55368 G1 I3; CEC
C55368 G2 I1; [cGC
w
Mismatch (b)

Figure 5. Transcripts that could be merged. (a) Transcripts C55368_G1_I3 and C55368_G2_I1 could be merged based on a stretch of 12
amino acids (NFDENRGALNSH) obtained from their ORFs. (b) The partial nucleotide sequences of these transcripts shows the repeat with
only a single nucleotide difference. The indicated single nucleotide difference may explain the failure of the assembly program to merge these
two transcripts. Interestingly, the transcript C55368_G1_I3 had two exact repeats of this stretch at the end which may have contributed to the
failure of the assembly program to merge these transcripts.
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leucine repeat, serine/threonine kinase(390aa)j
1000 2000 3000

clathrin light chain (331aa)

(a) - C8909_G1_I1

'Homeodomain-like superfamily isoform (543aa)

RING/U-box superfamily protein (464aa)

1000/ 2000

4

30001 | 4000/

(b) — C54995_G6_1I2

Figure 6. Identification of transcripts encoding multiple genes. These ORFs belong to the same transcript, and have significant matches
to different proteins. (a) Genes on the reverse strand, having no overlap - clathrin light chain (value=3E-126) and a leucine repeat rich
receptor-like serine/threonine protein kinase (E-value=0). (b) Genes on the same strand, having no overlap - RING/U-box superfamily protein
(E-value=7E-149) and a homeodomain-like superfamily protein isoform (E-value=0).

transcripts. Transcript C55368_G1_I3 had two exact repeats of this
stretch, which is a likely assembly error.

Single transcripts with two ORFs

Some transcripts were associated with multiple ORFs with distinct
significant matches in the ‘nr’ database. We demonstrate this for the
transcript C8909_G1_I1, which had two ORFs - ORF_104 (length =
331) and ORF_45 (length = 390) which matched to a clathrin
light chain® (Uniprot id:XP_006481016.1, E-value=3E-126) and
a leucine repeat rich receptor-like serine/threonine protein kinase’’
(Uniprot id: XP_007026739.1, E-value=0), respectively. These ORFs
were on opposite strands, and did not overlap. It was not possible
to ascertain which was the correct gene product, and it is a distinct
possibility that both strands were transcribed*. A slightly different
situation arose when both the ORFs were on the same strand*’, as in
the case of the transcript C54995_G6_I2. For example, in transcript
C54995_G6_12, there were two ORFs - ORF_157 (length = 464)
and ORF_231 (length = 543) that matched to a RING/U-box super-
family protein’ (Uniprot id: XP_007042454.1, E-value=7E-149)
and a homeodomain-like superfamily protein isoform*' (Uniprot id:
XP_007030696.1, E-value=0), respectively. Both of these proteins
were on the same (reverse) strand of the transcript. These transcripts
are candidates for chimeric* or fusion* genes, since the ribosome is
known to bypass small nucleotide stretches separating two ORFs*.

Highly transcribed genes

Table 1 shows the transcripts with the highest counts. Interestingly, the
most abundant transcript had no homologous counterpart in the full
BLAST ‘nr’ or ‘nt’ database (GenBank accession: C52369_G2_I1).
A proline-rich protein (PRP), a part of the protein superfamily of
cell wall proteins consisting of extensins and nodulins, was found
to have the second most abundant transcript’**. Proline comprises
19% of the amino acids in the ORF of this transcript. PRPs are
found as structural proteins in wood, and it was hypothesized that

these proteins occur in the xylem cell walls during ligniflication,
and influence the properties of wood**. PRPs were associated with
carrot storage root formation'’, were wound and auxin induc-
ible*’ and implicated in cell elongation®. PRPs are also an integral
component of saliva responsible for the precipitation of antinutri-
tive and toxic polyphenols by forming complexes”. Two DNAJ/
HSP40 chaperone proteins, which are involved in proper protein
folding, transport and stress response, showed high transcriptional
levels™. Two DNAJ/HSP40 chaperone homologs (GenBank acces-
sion id: BI677935 and BI1642398) were shown to be differentially
expressed during summer at the sapwood/heartwood TZ of black
locust™. The transcription levels of dehydrin-related proteins were
shown to be seasonally regulated in the wood of deciduous trees”*'.
However, this dehydrin protein is homologous to a 24kDa dehydrin
(Uniprot id: AGC51777) from Jatropha manihot, a drought resist-
ant plant®’, unlike the ~100kDa proteins investigated in 26. Senes-
cence-associated proteins, and the related tetraspanins, were also
highly transcribed”’. One highly expressed transcript was homolo-
gous to a protein that is yet to be characterized.

Finding genes

We demonstrated the (iterative) gene finding methodology in
YeATS on a transcription factor that has an AP2 DNA binding motif
(RAP2.6L in Arabidopsis, At5g13330)>. This protein showed dif-
ferential tissue specific expression, and is likely to be involved
in plant developmental processes and stress response’. Recently,
the sequence of a homolog of RAP2.6L. was deduced (Uniprot id:
C1KH72, JnRap2) from an EST sequence isolated from tissue at
the heartwood/sapwood TZ in black walnut (Juglans nigra L.), and
its role in the integration of ethylene and jasmonate signals in the
xylem and other tissues was established”. Using the sequence of
JnRap2, we probed for other RAP2 genes in the TZ of walnut. We
found three possible genes (C38523_G2_I1, C53728_G7_I1 and
C53728_G7_12) (Figure 7). It was observed that C53728_G7_12
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Table 1. A sample of highly transcribed genes with high normalized counts (NC). There are several highly transcribed
genes in the representative sample of the transcriptome from the tissue at the heartwood/sapwood transition zone (TZ) in
black walnut that did not have any significant homologs (NSL) in the complete ‘nr’ or ‘nt’ database. For the ‘nr’ database,
we use the three longest ORFs as query. The significance of dehydrins, senescence-associated and DNAJ proteins can
be observed through their transcription abundance.

ID NC Description E-value
C52369_G2_11 43040 NSL (putative extensin based on amino acid composition) -
C51134_G2_12 15200 ref|XP_008224364.1|PREDICTED: extensin-like [Prunus mume] 1e-08
C40830_G1_11 14169 ref|XP_006865673.1|dnaJ protein homolog isoform X2 [Solanum tuberosum] 0
C46581_G1_I1 10651 PREDICTED: Probable zinc transporter protein [Phoenix dactyliferal] 8e-09
C51134_G2_13 10631 emb|CAN59948.1 |hypothetica| protein VITISV_043422 [ Vitis vinifera] 6e-09
C44353_G2_I1 7769 gb|AGC51777.1 |dehydrin protein [Manihot esculenta] 6e-09
C44353_G1_I1 6652 gb|AAFO1465.2|AF190474_1 bdn1 [Paraboea crassifolia] 2e-19
C43130_G3_11 6601 gbIKEH16988.1|senescence—associated protein, putative [Medicago truncatula) 2e-129
C44922_G1_I11 5584 ref’XP_008363477.1 ‘tetraspanin—S—Iike [Malus domestical 2e-169

C40830_G1_l2 5113 ref|XP_OO7010484.1|DNAJ [Theobroma cacao] 0

C38523 G2 TI1
C53728 G7 Il
C53728 G7_I2
JnRap2

71

141
C38523 G2 Il
C53728 G7_I1 -
C53728 G7 12 -
JnRap2™ -

211
C38523 G2 TI1
C53728 G7 Il
C53728 G7 12
JnRap2

C38523 G2 Il
C53728 G7 Il
C53728 G7_I2
JnRap2

Figure 7. Finding genes from a template sequence. Multiple sequence alignment of possible genes for a transcription factor that had a
AP2 DNA binding motif compared to JnRap2, which was deduced from an EST sequence obtained from tissue at the heartwood/sapwood

transition zone in black walnut.

was closest to the JnRap2 gene (97.4% identity, 98.2% similar), and
is probably the same gene. C53728_G2_I1 was also significantly
homologous to the JnRap2 gene (84.4% identity, 92.4% similar),
and it appears to be an allelic or splice variant, a conflict that can be
resolved after the publication of the complete walnut genome. Raw
counts (see Supporting information) demonstrated that the tran-
script C38523_G2_I1 had negligible expression levels in TZ, cor-
roborating the previous detection of only one RAP2 protein in 55.

Transcripts with no significant matches in the ‘nr’ database -
possible long non-coding RNA genes?

The top three ORFs of ~600 transcripts had no match in the BLAST
‘nr’ database. Although these may be unique genes, another possibility
that must be considered is that these are non-coding RNA genes’. The
nucleotide sequences of these 600 transcripts were BLAST ed to the
database of noncoding RNAs in Arabidopsis*. Three matches were
identified: C52424_G5_I11, C52424_G5_14 and C53565_G3_I1.
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Both C52424 _G5_I11 and C52424_G5_14 are homologous to
CR20, a cytokinin-repressed gene in excised cotyledons of cucum-
ber, hypothesized to be non-coding RNA”’. Analogous to the current
work, the CR20 gene had alternate splicing’’. C53565_G3_I1 had
a 100% match to the Arabidopsis locus ATMGO01380, a mitochon-
drial 5S ribosomal RNA, which is a component of the 50S large
subunit of mitochondrial ribosome’*.

Discussion

High-throughput mRNA sequencing (RNA-Seq) has revolutionized
the field of transcript discovery, providing several advantages over
traditional methods’®. Following isolation and fragmentation of
RNA and subsequent generation of cDNA libraries, a high-throughput
sequencing platform is selected to generate short reads™. Recon-
struction of transcripts from these short reads (assembly) may be
performed using a reference genome or de novo algorithms'>-'%21%0,
Sequencing biases, variable coverage, sequencing errors, alternate
splicing and repeat sequences are some of the challenges faced by
these assemblers'*"".

Several post assembly computational tools provide further cura-
tion of transcripts resulting from the assemblers. The curation step
involves identifying redundancies'*”’, finding coding regions®,
annotating the transcripts (https://transdecoder.github.io/) and
detecting inaccuracies by aligning the transcripts to the genome®.
In the current work, we present an integrated workflow for RNA-
seq analysis (YeATS). YeATS includes most features of the tools
mentioned above. Additionally, YeATS delivers several capabilities
absent in these tools. A comprehensive BLAST analysis of the top
three open reading frames of each transcript enables the identifica-
tion of erroneous transcripts arising out of sequencing or assembly
errors. These erroneous transcripts can be classified as: a) transcripts
that have not been merged, b) transcripts that result in broken ORFs
and c) transcripts that have long improbable repeats. Finally, YeATS

F1000Research 2015, 4:155 Last updated: 05 APR 2017

provides annotation of the genes, enumerates homologous genes
based on a template sequence and specified similarity threshold and
identifies transcripts with multiple ORFs. The ribosome is known
to bypass small nucleotide stretches separating two ORFs*. These
are rare events, however, and thus unlikely to apply to the ~1200
transcripts that have broken ORFs pointing to the same gene®.
Transcripts having multiple ORFs on the same strand are good
candidates for chimeric* or fusion* genes dependent on ribosome
bypassing.

The current work reveals and corroborates several aspects of the
biology of hardwood trees. Probably, the most interesting is the
detection of a highly transcribed gene (C52369_G2_I1) with no
known homologs in the complete protein and nucleotide BLAST
database, or significant matches in a database of long non-coding
RNA genes™. If indeed the longest ORF of this transcript encodes
a protein, it is 143 amino acids long, and is leucine (18%), histidine
(13%) and valine (10%) rich (Figure 8). Although it is likely that
this is a protein with leucine rich repeats, these proteins are typi-
cally larger proteins®. On the other hand, histidine and valine rich
extensins have been reported to be constituents of plant cell walls of
dicots™. The regulatory stimuli of extensins are different for mono-
cots (which also have different amino acid composition) and dicots™.
A significant presence of extensin-like proteins in the cell wall of
both developing and mature xylem (wood) have been reported for
pine**®. The publication of the walnut genome will aid the charac-
terization of these genes by elucidating its promoter sequences.

Well characterized proteins like proline-rich proteins™°, dehy-
drins®®, senescence-associated proteins’’ and DNAJ/HSP40 chap-
erone’’ proteins were also abundant in the transcriptome. While
Arabidopsis supports secondary growth, it fails to accumulate
wood; it is therefore interesting to identify highly transcribed
genes that are missing in the Arabidopsis proteome (Table 2). The

(C52369_G2_11 in yellow, C51134_G2_12 in blue

19

18

3

1 11
Ogoo gopm O

20

Gly Pro Ala Val Leu lle MetPhe Tyr Trp His Lys Arg GIn Asn Glu Asp Cys Ser Thr

Figure 8. Percentage amino acid composition of the two most highly transcribed genes. C52369_G2_|1 has a high percentage of leucine,
histidine and valine, and is a putative extensin. C51134_G2_I2 is proline and lysine rich, and is homologous to an extensin and nodulin.
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Table 2. Identifying highly transcribed genes that are not present in the Arabidopsis proteome. The wood
quality of walnut and Arabidopsis are quite different. It is informative to identify genes (proteins) that are absent in
Arabidopsis, since they are likely to be responsible for the differences. The DNAJ/HSP40 chaperone, dehydrins
and tetraspanin proteins are found in the Arabidopsis proteome, while the putative extensin, the proline-rich
protein, a probable zinc transporter protein, an uncharacterized protein and senescence-associated protein
appear to be unique to the walnut proteome.

DNAJ/HSP40 chaperone, dehydrins and tetraspanin proteins are
found in the Arabidopsis proteome (TAIR10_pep_20101214%"),
while the putative extensin, the proline-rich protein, a prob-
able zinc transporter protein, an uncharacterized protein and
senescence-associated protein appear to be unique to the walnut
proteome.

Also, we corroborated the presence of a transcription factor that
has a AP2 DNA binding motif**>°, and identify additional splice/
allelic variants with similar transcriptional levels. Once again, the
knowledge of the walnut genome would enable a more profound
understanding of such genes.

Conclusions

In summary, the current work elucidates an integrated workflow for
RNA-seq analysis with several innovative features for identifying
and correcting erroneously assembled transcripts. We demonstrated
this workflow by characterizing the transcriptome of the tissue at
the heartwood/sapwood TZ in black walnut.
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Figure S1. Pictoral depiction of ‘Begin’ and ‘End’ database. The contents of the ‘Begin’ and ‘End’ databases are represented along with
the shared amino acid residues at the 3’ and &’ ends, respectively. The ‘merge5’ command identified the String1 pair in the ‘Begin’ and ‘End’
databases due to the shared sequence ‘abcde’. The ‘merge5’ command failed to identify the String2 pair since six residues are shared. The
‘merge6’ command, however, will recognize String2 in the ‘Begin’ and ‘End’ databases, but would fail to recognize pairs that shared seven
or more residues at the 3’ and 5’ ‘End’.
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Binay Panda
Genomics Applications and Informatics Technology laboratories (GANIT Labs), Bio-IT Centre, Institute of
Bioinformatics and Applied Biotechnology(IBAB), Bangalore, Karnataka, India

Chakraborty et al. implemented a workflow for error estimation and correction, functional annotation and
abundance estimation in RNA-seq data. They explored a methodology of analyzing longest ORFs of
transcripts, using BLAST, as means to identify important genes. Although BLAST has been very
commonly used for annotation, the authors proposed a very systematic approach of dividing the
annotations into four sets based on the quality of the ORFs and their functional assignments.

Overall comments:

The authors have done a good deal of work in exploring an important topic. The article gives many ideas
worth exploring and directions for annotating data from de novo transcriptome sequencing. However, |
suggest that the authors pay special attention to the usage of different terms (genome, transcriptome,
RNA-seq, reads etc.) and be consistent in their usage throughout the manuscript. Additionally, the figure
legends need complete re-writing and the perl scripts need to be included in the supporting information.
Several explanations need to be provided throughout the manuscript (details below).

A single round of proofreading will hugely improve the manuscript.

Specific suggestions/questions:

The title states that YeATS identifies a highly transcribed putative extension. This is a bit misleading.
YeATS takes as input already assembled transcripts from Trinity, estimates their expression, employs
BLAST to try and assign a function to the most highly transcribed gene, and finds no known homologs.
Only from the manual examination of the amino acid content of its longest ORF do the authors come to
the conclusion that it is a putative extension. It will perhaps be better to mention the error-detection and
estimation capabilities of YeATS as its strongest points.

Introduction: What evidence is there to suggest that a putative protein with a high percentage of leucine,
histidine and valine is a probable extension?

Where does Algorithm 1 fit in? Why is it needed? Merging of transcripts is mentioned for the first time in
methods, without an explanation of why it is important and where are its potential applications? The
authors should explain the algorithm and how it serves in detecting error in assembly/sequencing, and
what kind of transcripts should be used in merging.

Algo 1 - Why is the length range defined as 5 to 157 Is there an explanation behind the selection? Also,
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5-15 is nucleotides or amino acids?
Algo 1 - Please clarify why 2-letter strings have been called a 'repetitive'? They should be ignored,
agreeably, because they are too short to give any reliable results, but it is misleading to call them

repetitive?

In algorithm 1, what is meant by 'prefix’ of transcripts? If the workflow, YeATS, is so strictly dependent on
the Trinity transcript headers, it needs to be clearly mentioned in the article.

Is TRS' equivalent to 'transcript'? Please include a list of abbreviations used in the manuscript at the
beginning of the manuscript.

Is there a rationale behind running BLAST a second time, when from the very first BLAST run, which gives
the best ORF selection, the gene functional annotation can also be obtained? This could make use of the

Algorithm 2 and reduce the overall runtime.

Algo2 - The genome does not picture anywhere here, therefore, is misleading to say ‘identifying
homologous genes in the genome based on the transcriptome.'

Algo2 - is 'lengthcutoff' a % or number of nucleotides or amino acids? 'Input' says %, whereas in the algo it
is simple difference.

Algo2 - 'Both these transcripts are now potential genes', which 2 transcripts are the authors talking about?
Equation 1 - Which raw counts are these? How are they obtained?

What is 'score' in equation 1?

Sequence alignment of what was done using ClustalW? What was it used for?

In vitro methods

The authors should list the 19 different samples whose cDNA libraries were sequenced. Were these
combined and assembled as a single transcriptome? Is this used a reference for read alignment and
counts estimation? If not, what is the reference for read count estimation?

All bases below quality score 35 were trimmed? That is a very stringent criterion. You would lose a lot of
data if not a single base below 35 quality score is retained post-trimming. Why did the authors choose to
use this?

TZ - please expand the abbreviation.

bwa aln gives aligned files, not counts. What was used to generate the raw counts? Also, bwa is not a
splicing aware aligner. Authors should use Bowtie instead to do this, which may prove to be a better

alternative.

All the figures need to be improved. In all figures, the sequence in question should be highlighted / boxed
to make it easier for the reader to follow what is being talked about.

Figure 5 legend - 'shows the repeat'. which repeat? Authors should clearly mention that there are 2
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contiguous repeats of the same 39aa sequence in the transcript C55368_G1_I3. Also, there are 2
different reasons mentioned why the assembler could not merge the 2 transcripts in question. Please
clarify which is the case.

GitHub repository

The README file requires substantial work. Some of the commands are quite confusing, comments are
not clear, and perl scripts are not to be found. The numerous manual steps make the tool virtually
un-useable.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Referee Report 28 January 2016

doi:10.5256/f1000research.7788.r12066

v

Michael I. Love
Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA

| do not have expertise in transcript assembly, but | can comment on the general readability and usability
of the article and tool suite.

1. As with the report from Dr. Charoensawan, | was expecting that the tool suite would be more
integrated and documented than the collection of Perl scripts on the Github page. Nevertheless,
the set of examples shown in the article | think are useful at showing the kinds of errors which arise
from transcript assembly and presumably it is easy to use the scripts to identify such
examples. The README is currently very minimal for a tool suite / integrated workflow, looking
more like a set of comments above code rather than proper documentation of a tool suite. | would
recommend changing from README to README.md, using Github markdown e.g. enclosing the
commands in backticks, re-writing the comments as full sentences/paragraphs, separating the
different steps by sub-headings, etc. A little effort here will make the landing page much more
appealing. Also the documentation on the Github page should provide detailed information on the
expected inputs and outputs.

2. The colors in Figure 1 make the text a bit hard to read. As Figure 1 is often where many readers will

go to understand what you are doing, you would benefit from making the colors lighter so the text is
easier to read, and removing unnecessary shading, 3D effects, etc.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Author Response 30 Jan 2016
Sandeep Chakraborty, Tata Institute of Fundamental Research, India
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We thank you for taking the time to review this paper, and for your comments.

As we have mentioned previously in response to Dr Charoensawan, this manuscript is not meant
to be a software article. The primary reason for this is that the flow is not push-button. One simple
goal of this paper was to highlight downstream checks that can correct and improve the results of a
heuristic assembler like Trinity (which is bound to have certain limitations).

An enhanced version of the merging algorithm (which struck us later on) is to check whether the
E-value of the merged transcript decreases when BLAST'ed as compared to the two transcripts
being merged. This definitely would point to a non-merged assembly.

Also, most of the methods described here are reasonably simple to code.
In time, as we figure out how to automate the scripts better, we will certainly incorporate your
suggestions.

We will revise the manuscript with a simpler and less distracting version of Figure 1.

Competing Interests: No competing interests were disclosed.No competing interests were
disclosed.

Referee Report 04 January 2016

doi:10.5256/f1000research.7788.r11300

v

Varodom Charoensawan
Mahidol University, Bangkok, Thailand

The authors have addressed most of my previous comments.

However, | still have one reservation on the use of Arabidopsis "proteome" (instead of of publicly available
transcriptomes) as a benchmark for walnut transcripts found, in the section "ldentifying highly transcribed
genes that are not present in the Arabidopsis proteome". It would be useful if the authors could clarify this.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Sandeep Chakraborty, Tata Institute of Fundamental Research, India

Dear Dr Charoensawan,
We would like to thank you once again for critically reviewing, and accepting the revised version.

As for the Table 2, which mentions the "Identifying highly transcribed genes that are not present in
the Arabidopsis proteom
e" that you have found inadequately explained, we would like to specify that
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1) This set of transcripts were first chosen as they have high expression levels (Table 1).

This table already shows the homology of the ORF's of these transcripts to the BLAST 'nr'
database (apart from the first transcript, all other have some degree of homologous counterparts).
2) Next, Arabidopsis was chosen on purpose since (as we mention in the text) "it fails to
accumulate wood".

Our intention was to extricate differences in the transcripts which probably define the wood quality
of walnut. Choosing other proteomes that included other wood generating plants would not suffice
to find such transcripts.

We will try to rephrase this part to make it more lucid when we make another version (it would be
too small a change for a new version, otherwise).

best wishes,
Sandeep

Competing Interests: No competing interests were disclosed.

Referee Report 05 October 2015

doi:10.5256/f1000research.7105.r10335

? Varodom Charoensawan
Mabhidol University, Bangkok, Thailand

Chakraborty and coworkers proposed a new platform for analysing transcriptomic data from RNA-seq
(YeATS -Yet Another Tool Suite for analyzing RNA-seq derived transcriptome). The key feature of the tool
highlighted by the authors is error estimation and correction of assembled transcripts, which is performed
by analysing ORFs predicted in each transcript and merging of transcripts. This error-filtering step is
supposedly missing in most other existing tools to date. In addition, YeATS is able to perform other
common RNA-seq analytic tasks, such as transcript abundance estimation.

From the point of view of a frequent user of NGS tools, rather than a developer, | can see that such a tool

can be useful for improving transcript assembly and estimation, especially in organisms with no or poorly

annotated genomes. However, there are a number of points that, to me, would improve the tool and the

article, and it would be great if the authors could address/clarify. | would be happy to discuss this further if

any of my comments are not clear.

® |t would be nice to include a performance evaluation of this new platform against existing tools, or

with vs’ without the transcript error correction step by YeATS. One way to do this might be to take
an existing RNA-seq dataset from a well-annotated organism such as Arabidopsis as a gold
standard, and perform transcript assembly-estimation with and without correction by YeATS, and
compare this to the transcript estimation using genomic information (e.g. by mapping reads to
annotated transcriptomes/genomes). Does YeATS indeed improve the coverage and specificity of
transcript estimation, for instance?
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Along the same lines as the comment above, it would be useful if the authors could comment on
the time and/or computing resources required to perform the correction step. Also, are the
accuracy and computing resources dependent on the read lengths and/or sequencing platforms?
(Oris it intended for lllumina reads as used in the example?).

Both the source code of YeATS and the data set used to illustrate its usage have been deposited
and described at the end of the article. However, to this reviewer’s understanding, there is a set of
Perl scripts deposited to Github, but it is still not clear to me how the tool/workflow should be
implemented. The README does not seem to describe this. Could the author point out if there is
already a guideline or documentation on how to use or integrate YeATS into an existing NGS
workflow, if that already exists?

To my understanding, the input of YeATS is a set of assembled transcripts performed by other
tools (e.g. Trinity). However, this step was not clearly described in the “in vitro methods” section on
Page 5. Instead, it seems the trimmed reads were directly aligned to J. regia transcriptome, which
is somewhat confusing. Could you please clarify these?

The authors described the genes as highly “transcribed” in walnut (according to RNA-seq from this
study?) that are not present in Arabiodopsis “proteome”. | found these to be slightly
disconnected.

Minor comments:

Figure 1: Is the “no” label between the boxes “Choose longest ORF” to “Gene annotation”
necessary?

Page 3, 2"d column, line 12: modify the text to “often in distinct regions of the transcript..” for
clarity?

Page 5, 1St column: There were ~24K “of” such transcripts

Figure 6’s legend: These ORF’s”

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Competing Interests: No competing interests were disclosed.

Sandeep Chakraborty, Tata Institute of Fundamental Research, India

We would like to thank you for taking the time to review this paper. Please find our responses
below.

Chakraborty and coworkers proposed a new platform for analysing transcriptomic data
from RNA-seq (YeATS -Yet Another Tool Suite for analyzing RNA-seq derived
transcriptome). The key feature of the tool highlighted by the authors is error estimation
and correction of assembled transcripts, which is performed by analysing ORFs predicted
in each transcript and merging of transcripts. This error-filtering step is supposedly
missing in most other existing tools to date. In addition, YeATS is able to perform other
common RNA-seq analytic tasks, such as transcript abundance estimation. From the point
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of view of a frequent user of NGS tools, rather than a developer, | can see that such a tool
can be useful for improving transcript assembly and estimation, especially in organisms
with no or poorly annotated genomes.

We appreciate your positive comments, and the possibility of value addition by the suggested
methodology for existing NGS flows. We believe that this is the first attempt to associate the key
information encoded by transcripts within ORFs to assess the accuracy of the assembly.

However, there are a number of points that, to me, would improve the tool and the article,
and it would be great if the authors could address/clarify. | would be happy to discuss this
further if any of my comments are not clear. It would be nice to include a performance
evaluation of this new platform against existing tools, or with vs without the transcript
error correction step by YeATS. One way to do this might be to take an existing RNA-seq
dataset from a well-annotated organism such as Arabidopsis as a gold standard, and
perform transcript assembly-estimation with and without correction by YeATS, and
compare this to the transcript estimation using genomic information (e.g. by mapping
reads to annotated transcriptomes/genomes). Does YeATS indeed improve the coverage
and specificity of transcript estimation, for instance?

YeATS evaluates the accuracy of a transcriptome, but it is dependent on downstream tools (like
MAKER) to use this for proper annotation of the genes. Thus, there are no existing tools that we
could compare it with directly. A highly curated database like the Arabidopsis would not be a fair
comparison, since it might have been annotated looking at several data points. However, we have
extensively used the YeATS pipeline in processing the newly sequenced walnut genome
(manuscript in review), and established erroneous assembly for several genes of interest. The
transcriptome from several other tissues were included in the genome study. Interestingly, the 5%
error estimate remained the same.

Along the same lines as the comment above, it would be useful if the authors could
comment on the time and/or computing resources required to perform the correction step.
Also, are the accuracy and computing resources dependent on the read lengths and/or
sequencing platforms? (Or is it intended for lllumina reads as used in the example?).

The run times for most of the processing required in YeATS is a few hours on a 16 GB, 16-core
machine, barring the search for homologies in the BLAST ’'nr’ database, which can be
time-intensive for a comprehensive search. This search can be significantly accelerated when the
organism under investigation has well-annotated protein databases (as in the current case), much
in lines of the newly introduced SMARTBLAST (http://blast.ncbi.nim.nih.gov/smartblast/), to run
times under a day. Run times are dependent on the number of transcripts only, since the input to
YeATS is an assembled transcriptome from a tool like Trinity. We have included this information in
the manuscript.

Both the source code of YeATS and the data set used to illustrate its usage have been
deposited and described at the end of the article. However, to this reviewers
understanding, there is a set of Perl scripts deposited to Github, but it is still not clear to
me how the tool/workflow should be implemented. The README does not seem to
describe this. Could the author point out if there is already a guideline or documentation
on how to use or integrate YeATS into an existing NGS workflow, if that already exists?
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We have provided a README that describes the step in the YeATS workflow. However, this is not
a push-button methodology, and goes through several steps, each of which is dependent on the
previous step. Also, we have used custom schedulers, and thus several steps need to be adjusted
depending on available resources. For example, the number of parallel jobs and the time-step
between each submission is controlled through a custom-script. Thus, we have provided the key
algorithms in detail in the paper for any developer to easily replicate our results. Furthermore, we
are enhancing several of the programs based on more sophisticated algorithms (like using kmers,
compression of data, etc). A proper release of this software will require some more time, but this
manuscript was not meant to be a software article.

To my understanding, the input of YeATS is a set of assembled transcripts performed by
other tools (e.g. Trinity). However, this step was not clearly described in the in vitro
methods section on Page 5. Instead, it seems the trimmed reads were directly aligned to
J. regia transcriptome, which is somewhat confusing. Could you please clarify these?

The input of YEATS is indeed a set of assembled transcripts performed by other tools like Trinity.
We have modified the methods section to clarify this.

The authors described the genes as highly transcribed in walnut (according to RNA-seq
from this study?) that are not present in Arabiodopsis proteome. | found these to be
slightly disconnected.

We agree that these results are slightly disconnected to the general narrative of this paper, which
focuses on post-assembly methodologies to assess the accuracy of assembled transcripts.
However, these are interesting results that emerge during the analysis of the transcriptome of the
transition zone of walnut, which has been obtained for the first time. And thus, though this may be
of interest to researchers in the field, there is too little data to spin-off another paper to publish
these findings.

Minor comments:
Figure 1:Is the no label between the boxes Choose longest ORF to Gene annotation
necessary?

We have changed the label 'no’ to 'unannotated’. Long ORFs that do not have have significant
matches are probably uncharacterized genes, and the genome could be annotated accordingly
(although the annotation of novel genes is another problem not addressed in the current paper).

Page 3, 2nd column, line 12: modify the text to often in distinct regions of the transcript..
for clarity?

We have clarified this: ‘The ORFs map to different fragments of the same protein. This points to an
error in the sequencing or the assembly, which breaks down the contiguous ORF into two
fragments.’

Page 5, 1st column: There were 24K of such transcripts Figure 6s legend: These ORFs

We have made these modifications. Once again, we are thankful for your insightful comments, and
hope to have addressed your concerns.

Competing Interests: No competing interests were disclosed.
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