3,727 research outputs found

    Metric projective geometry, BGG detour complexes and partially massless gauge theories

    Get PDF
    A projective geometry is an equivalence class of torsion free connections sharing the same unparametrised geodesics; this is a basic structure for understanding physical systems. Metric projective geometry is concerned with the interaction of projective and pseudo-Riemannian geometry. We show that the BGG machinery of projective geometry combines with structures known as Yang-Mills detour complexes to produce a general tool for generating invariant pseudo-Riemannian gauge theories. This produces (detour) complexes of differential operators corresponding to gauge invariances and dynamics. We show, as an application, that curved versions of these sequences give geometric characterizations of the obstructions to propagation of higher spins in Einstein spaces. Further, we show that projective BGG detour complexes generate both gauge invariances and gauge invariant constraint systems for partially massless models: the input for this machinery is a projectively invariant gauge operator corresponding to the first operator of a certain BGG sequence. We also connect this technology to the log-radial reduction method and extend the latter to Einstein backgrounds.Comment: 30 pages, LaTe

    Quantum Gravity and Causal Structures: Second Quantization of Conformal Dirac Algebras

    Get PDF
    It is postulated that quantum gravity is a sum over causal structures coupled to matter via scale evolution. Quantized causal structures can be described by studying simple matrix models where matrices are replaced by an algebra of quantum mechanical observables. In particular, previous studies constructed quantum gravity models by quantizing the moduli of Laplace, weight and defining-function operators on Fefferman-Graham ambient spaces. The algebra of these operators underlies conformal geometries. We extend those results to include fermions by taking an osp(1|2) "Dirac square root" of these algebras. The theory is a simple, Grassmann, two-matrix model. Its quantum action is a Chern-Simons theory whose differential is a first-quantized, quantum mechanical BRST operator. The theory is a basic ingredient for building fundamental theories of physical observables.Comment: 4 pages, LaTe

    Control of the Sale of Sleeping Pills

    Get PDF

    Control of the Sale of Sleeping Pills

    Get PDF

    Alien Registration- Waldron, Mary E. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/21661/thumbnail.jp

    Development of biaxial test fixture includes cryogenic application

    Get PDF
    Test fixture has the capability of producing biaxial stress fields in test specimens to the point of failure. It determines biaxial stress by dividing the applied load by the net cross section. With modification it can evaluate materials, design concepts, and production hardware at cryogenic temperatures

    Gravitational- and self-coupling of partially massless spin 2

    Get PDF
    We show that higher spin systems specific to cosmological spaces are subject to the same problems as models with Poincaré limits. In particular, we analyze partially massless (PM) spin 2 and find that both its gravitational coupling and nonlinear extensions suffer from the usual background- and self-coupling difficulties: Consistent free field propagation does not extend beyond background Einstein geometries. Then (using conformal, Weyl, gravity, which contains relative ghost PM and graviton excitations) we find that avoiding graviton ghosts restricts Weyl-generated PM self-couplings to the usual, leading, safe, Noether current cubic ones

    Health equity and sustainability in greenfields urban planning.

    Full text link
    • …
    corecore