1,470 research outputs found

    Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction.

    Get PDF
    Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis

    Calicivirus emergence from ocean reservoirs: zoonotic and interspecies movements.

    Get PDF
    Caliciviral infections in humans, among the most common causes of viral-induced vomiting and diarrhea, are caused by the Norwalk group of small round structured viruses, the Sapporo caliciviruses, and the hepatitis E agent. Human caliciviruses have been resistant to in vitro cultivation, and direct study of their origins and reservoirs outside infected humans or water and foods (such as shellfish contaminated with human sewage) has been difficult. Modes of transmission, other than direct fecal-oral routes, are not well understood. In contrast, animal viruses found in ocean reservoirs, which make up a second calicivirus group, can be cultivated in vitro. These viruses can emerge and infect terrestrial hosts, including humans. This article reviews the history of animal caliciviruses, their eventual recognition as zoonotic agents, and their potential usefulness as a predictive model for noncultivatable human and other animal caliciviruses (e.g., those seen in association with rabbit hemorrhagic disease)

    Development of the morpholino gene knockdown technique in Fundulus heteroclitus : a tool for studying molecular mechanisms in an established environmental model

    Get PDF
    Author Posting. Š Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 87 (2008): 289-295, doi:10.1016/j.aquatox.2008.02.010.A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in β-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.This work was funded in part by the National Institute of Environmental Health Sciences through the Duke Superfund Basic Research Center (P42ES010356), the Boston University Superfund Basic Research Program (P42ES007381), and the Duke Integrated Toxicology and Environmental Health Program (ES-T32-0007031). Additional support was provided by a U.S. Environmental Protection Agency STAR fellowship awarded to C.R.F

    Electronic Consequences of Ligand Substitution at Heterometal Centers in Polyoxovanadium Clusters: Controlling the Redox Properties through Heterometal Coordination Number

    Get PDF
    The rational control of the electrochemical properties of polyoxovanadate‐alkoxide clusters is dependent on understanding the influence of various synthetic modifications on the overall redox processes of these systems. In this work, the electronic consequences of ligand substitution at the heteroion in a heterometal‐functionalized cluster was examined. The redox properties of [V5_{5}O6_{6}(OCH3_{3})12_{12}FeCl] (1‐[V5_{5}FeCl] ) and [V5_{5}O6_{6}(OCH3_{3})12_{12}Fe]X (2‐[V5Fe]X ; X=ClO4_{4}, OTf) were compared in order to assess the effects of changing the coordination environment around the iron center on the electrochemical properties of the cluster. Coordination of a chloride anion to iron leads to an anodic shift in redox events. Theoretical modelling of the electronic structure of these heterometal‐functionalized clusters reveals that differences in the redox profiles of 1‐[V5_{5}FeCl] and 2‐[V5_{5}Fe]X arise from changes in the number of ligands surrounding the iron center (e.g., 6‐coordinate vs. 5‐coordinate). Specifically, binding of the chloride to the sixth coordination site appears to change the orbital interaction between the iron and the delocalized electronic structure of the mixed‐valent polyoxovanadate core. Tuning the heterometal coordination environment can therefore be used to modulate the redox properties of the whole cluster

    Escherichia coli DNA Helicase II Is Active as a Monomer

    Get PDF
    Helicases are thought to function as oligomers (generally dimers or hexamers). Here we demonstrate that although Escherichia coli DNA helicase II (UvrD) is capable of dimerization as evidenced by a positive interaction in the yeast two-hybrid system, gel filtration chromatography, and equilibrium sedimentation ultracentrifugation (Kd = 3.4 microM), the protein is active in vivo and in vitro as a monomer. A mutant lacking the C-terminal 40 amino acids (UvrDDelta40C) failed to dimerize and yet was as active as the wild-type protein in ATP hydrolysis and helicase assays. In addition, the uvrDDelta40C allele fully complemented the loss of helicase II in both methyl-directed mismatch repair and excision repair of pyrimidine dimers. Biochemical inhibition experiments using wild-type UvrD and inactive UvrD point mutants provided further evidence for a functional monomer. This investigation provides the first direct demonstration of an active monomeric helicase, and a model for DNA unwinding by a monomer is presented

    Escherichia coli MutL Loads DNA Helicase II onto DNA

    Get PDF
    Previous studies have shown that MutL physically interacts with UvrD (DNA helicase II) (Hall, M. C., Jordan, J. R., and Matson, S. W. (1998) EMBO J. 17, 1535-1541) and dramatically stimulates the unwinding reaction catalyzed by UvrD in the presence and absence of the other protein components of the methyl-directed mismatch repair pathway (Yamaguchi, M., Dao, V., and Modrich, P. (1998) J. Biol. Chem. 273, 9197-9201). The mechanism of this stimulation was investigated using DNA binding assays, single-turnover helicase assays, and unwinding assays involving long duplex DNA substrates. The results indicate that MutL binds DNA and loads UvrD onto the DNA substrate. The interaction between MutL and DNA and that between MutL and UvrD are both important for stimulation of UvrD-catalyzed unwinding. MutL does not clamp UvrD onto the substrate; and therefore, the processivity of unwinding is not increased in the presence of MutL. The implications of these results are discussed, and models are presented for the mechanism of MutL stimulation as well as for the role of MutL as a master coordinator in the methyl-directed mismatch repair pathway

    The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS): Spectral Maps of the Asteroid Bennu

    Full text link
    The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000-2300 cm-1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89-1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid's surface.Comment: 14 figures, 3 tables, Space Science Reviews, submitte

    NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results

    Get PDF
    The NEOWISE dataset offers the opportunity to study the variations in albedo for asteroid classification schemes based on visible and near-infrared observations for a large sample of minor planets. We have determined the albedos for nearly 1900 asteroids classified by the Tholen, Bus and Bus-DeMeo taxonomic classification schemes. We find that the S-complex spans a broad range of bright albedos, partially overlapping the low albedo C-complex at small sizes. As expected, the X-complex covers a wide range of albedos. The multi-wavelength infrared coverage provided by NEOWISE allows determination of the reflectivity at 3.4 and 4.6 Îź\mum relative to the visible albedo. The direct computation of the reflectivity at 3.4 and 4.6 Îź\mum enables a new means of comparing the various taxonomic classes. Although C, B, D and T asteroids all have similarly low visible albedos, the D and T types can be distinguished from the C and B types by examining their relative reflectance at 3.4 and 4.6 Îź\mum. All of the albedo distributions are strongly affected by selection biases against small, low albedo objects, as all objects selected for taxonomic classification were chosen according to their visible light brightness. Due to these strong selection biases, we are unable to determine whether or not there are correlations between size, albedo and space weathering. We argue that the current set of classified asteroids makes any such correlations difficult to verify. A sample of taxonomically classified asteroids drawn without significant albedo bias is needed in order to perform such an analysis.Comment: Accepted to Ap

    Helicase on DNA: A Phase coexistence based mechanism

    Get PDF
    We propose a phase coexistence based mechanism for activity of helicases, ubiquitous enzymes that unwind double stranded DNA. The helicase-DNA complex constitutes a fixed-stretch ensemble that entails a coexistence of domains of zipped and unzipped phases of DNA, separated by a domain wall. The motor action of the helicase leads to a change in the position of the fixed constraint thereby shifting the domain wall on dsDNA. We associate this off-equilibrium domain wall motion with the unzipping activity of helicase. We show that this proposal gives a clear and consistent explanation of the main observed features of helicases.Comment: Revtex4. 5 pages. 4 figures. Published versio
    • …
    corecore