4,816 research outputs found
Remote sensing in Iowa agriculture: Identification and classification of Iowa's crops, soils and forestry resources using ERTS-1 and complimentary underflight imagery
The author has identified the following significant results. Springtime ERTS-1 imagery covering pre-selected test sites in Iowa showed considerable detail with respect to broad soil and land use patterns. Additional imagery has been incorporated into a state mosaic. The mosaic was used as a base for soil association lines transferred from an existing map. The regions of greatest contrast are between the Clarion-Nicollet-Webster soil association area and adjacent areas. Landscape characteristics in this area result in land use patterns with a high percentage of pasture, hay, and timber. The soil association areas of the state that have patterns interpreted to be associated with intensive row crop production are: Moody, Galva-Primghar-Sac, Clarion-Nicollet-Webter, Tama-Muscatine, Dinsdale-Tama, Cresco-Lourdes, Clyde, Kenyon-Floyd-Clyde, and the Luton-Onawa-Salix area on the Missouri River floodplain. Forestland estimates have been attained for an area in central Iowa using wintertime ERTS-1 imagery. Visual analysis of multispectral, temporal imagery indicates that temporal analysis for cropland identification and acreage analyses procedures may be a very useful tool. Combinations of wintertime, springtime, and summertime ERTS-1 imagery separate most vegetation types. Timing can be critical depending upon crop development and harvesting times because of the dynamic nature of agricultural production
Remote sensing in Iowa agriculture: Identification and classification of Iowa's crops, soils and forestry resources using ERTS-1 and complimentary underflight imagery
There are no author-identified significant results in this report
Productivity levels of some Iowa soils
This report presents crop yield estimates for corn, soybeans, oats, and hay on 290 selected soil types and phases. These yield estimates are believed attainable as a 5-year average with the technology available in 1971 and average weather conditions.https://lib.dr.iastate.edu/specialreports/1063/thumbnail.jp
SAIDE: a Semi-Automated interface for Hydrogen/Deuterium Exchange Mass Spectrometry
Comunicaciones a congreso
Heavy‐Element Diffusion in Metal‐poor Stars
Stellar evolution models that include the effect of helium and heavy-element diffusion have been calculated for initial iron abundances of [Fe/H] = -2.3, -2.1, -1.9, and -1.7. These models were calculated for a large variety of masses and three separate mixing lengths, α = 1.50, 1.75, and 2.00 (with α = 1.75 being the solar calibrated mixing length). The change in the surface iron abundance for stars of different masses was determined for the ages of 11, 13, and 15 Gyr. Iron settles out of the surface convection zone on the main sequence ; this iron is dredged back up when the convection zone deepens on the giant branch. In all cases, the surface [Fe/H] abundance in the turnoff stars was at least 0.28 dex lower than the surface [Fe/H] abundance in giant branch stars of the same age. However, Gratton et al. recently found, based on high-dispersion spectra of stars in the globular cluster NGC 6397, that the turnoff and giant branch stars had identical (within a few percent) iron abundances of [Fe/H] = -2.03. These observations prove that heavy-element diffusion must be inhibited in the surface layers of metal- poor stars. When diffusion is inhibited in the outer layers of a stellar model, the predicted temperatures of the models are similar to those of models evolved without diffusion, while the predicted lifetimes are similar to those of stars in which diffusion is not inhibited. Isochrones constructed from the models in which diffusion is inhibited fall halfway between isochrones without diffusion and isochrones with full diffusion. As a result, absolute globular cluster ages based upon the absolute magnitude of the turnoff are 4% larger than ages inferred from full-diffusion isochrones and 4% smaller than ages inferred from non-diffusion isochrones
Iowan Drift Problem, Northeastern Iowa
https://ir.uiowa.edu/igs_ri/1006/thumbnail.jp
Nonlinear Magneto-Optical Response of - and -Wave Superconductors
The nonlinear magneto-optical response of - and -wave superconductors
is discussed. We carry out the symmetry analysis of the nonlinear
magneto-optical susceptibility in the superconducting state. Due to the surface
sensitivity of the nonlinear optical response for systems with bulk inversion
symmetry, we perform a group theoretical classification of the superconducting
order parameter close to a surface. For the first time, the mixing of singlet
and triplet pairing states induced by spin-orbit coupling is systematically
taken into account. We show that the interference of singlet and triplet
pairing states leads to an observable contribution of the nonlinear
magneto-optical Kerr effect. This effect is not only sensitive to the
anisotropy of the gap function but also to the symmetry itself. In view of the
current discussion of the order parameter symmetry of High-T
superconductors, results for a tetragonal system with bulk singlet pairing for
various pairing symmetries are discussed.Comment: 21 pages (REVTeX) with 8 figures (Postscript
Electron and hole transmission through superconductor - normal metal interfaces
We have investigated the transmission of electrons and holes through
interfaces between superconducting aluminum (Tc = 1.2 K) and various normal
non-magnetic metals (copper, gold, palladium, platinum, and silver) using
Andreev-reflection spectroscopy at T = 0.1 K. We analyzed the point contacts
with the modified BTK theory that includes Dynes' lifetime as a fitting
parameter G in addition to superconducting energy gap 2D and normal reflection
described by Z. For contact areas from 1 nm^2 to 10000 nm^2 the BTK Z parameter
was 0.5, corresponding to transmission coefficients of about 80 %, independent
of the normal metal. The very small variation of Z indicates that the
interfaces have a negligible dielectric tunneling barrier. Fermi surface
mismatch does not account for the observed transmission coefficient.Comment: 9 pages, 4 figures, submitted to Proceedings of the 19th
International Conference on Magnetism ICM2012 (Busan 2012
Approximate probabilistic verification of hybrid systems
Hybrid systems whose mode dynamics are governed by non-linear ordinary
differential equations (ODEs) are often a natural model for biological
processes. However such models are difficult to analyze. To address this, we
develop a probabilistic analysis method by approximating the mode transitions
as stochastic events. We assume that the probability of making a mode
transition is proportional to the measure of the set of pairs of time points
and value states at which the mode transition is enabled. To ensure a sound
mathematical basis, we impose a natural continuity property on the non-linear
ODEs. We also assume that the states of the system are observed at discrete
time points but that the mode transitions may take place at any time between
two successive discrete time points. This leads to a discrete time Markov chain
as a probabilistic approximation of the hybrid system. We then show that for
BLTL (bounded linear time temporal logic) specifications the hybrid system
meets a specification iff its Markov chain approximation meets the same
specification with probability . Based on this, we formulate a sequential
hypothesis testing procedure for verifying -approximately- that the Markov
chain meets a BLTL specification with high probability. Our case studies on
cardiac cell dynamics and the circadian rhythm indicate that our scheme can be
applied in a number of realistic settings
- …