141 research outputs found

    The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data

    Get PDF
    We propose a revised Chapman model for the ionosphere of Mars by allowing for vertical variation of electron temperature. An approximate energy balance between solar EUV heating and CO2 collisional cooling is applied in the dayside Martian ionosphere, analogous to the method recently proposed by Withers et al. (2014). The essence of the model is to separate the contributions of the neutral and electron thermal structures to the apparent width of the main ionospheric layer. Application of the model to the electron density profiles from the Mars Global Surveyor (MGS) radio occultation measurements reveals a clear trend of elevated electron temperature with increasing solar zenith angle (SZA). It also reveals that the characteristic length scale for the change of electron temperature with altitude decreases with increasing SZA. These observations may imply enhanced topside heat influx near the terminator, presumably an outcome of the solar wind interactions with the Martian upper atmosphere. Our analysis also reveals a tentative asymmetry in electron temperature between the northern and southern hemispheres, consistent with the scenario of elevated electron temperature within minimagnetospheres

    A Potential Aid in the Target Selection for the Comet Interceptor Mission

    Get PDF
    The upcoming Comet Interceptor mission involves a parking phase around the Sun-Earth L2 point before transferring to intercept the orbit of a long period comet, interstellar object or a back-up target in the form of a short-period comet. The target is not certain to be known before the launch in 2029. During the parking phase there may thus arise a scenario wherein a decision needs to be taken of whether to go for a particular comet or whether to discard that option in the hope that a better target will appear within a reasonable time frame later on. We present an expectation value-based formalism that could aid in the associated decision making provided that outlined requirements for its implementation exist

    Solar wind interaction with comet 67P: impacts of corotating interaction regions

    Get PDF
    International audienceWe present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1–2.7 AU from the Sun and the neutral outgassing rate ∌1025–1026 s−1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10–30 km. The ionospheric low-energy (∌5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below −20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (∌10–100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2–5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events

    Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements

    Get PDF
    International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∌1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∌1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet

    Observational tests of interstellar methanol formation

    Get PDF
    Context. It has been established that the classical gas-phase production of interstellar methanol (CH3OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces. Aims: While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs). Methods: We have observed the rotational transition quartets J = 2K - 1K of 12CH3OH and 13CH3OH at 96.7 and 94.4 GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J = 1-0 transitions of 12C18O and 13C18O were observed towards some of these sources. We use the 12C/13C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH3OH and CO. If not, the ratio should be higher in CH3OH due to 13C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol. Results: We show that the 12C/13C isotopic ratio is very similar in gas-phase CH3OH and C18O, on the spatial scale of about 40", towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity. Conclusions: While the 12C/13C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive
    • 

    corecore