2,394 research outputs found

    Scalable coexistence of eMBB, URLLC and mMTC enabled by non-orthogonal multiple access and network slicing

    Get PDF
    Abstract. The 5G systems feature three use cases: enhanced Mobile BroadBand (eMBB), massive Machine-Type Communications (mMTC) and Ultra-Reliable and Low-Latency Communications (URLLC). The diverse requirements of the corresponding services in terms of achievable data-rate, number of connected devices, latency and reliability can lead to sub-optimal use of the 5G resources, thus network slicing emerges as a promising alternative that customizes slices of the network specifically designed to meet specific requirements. By employing network slicing, the radio resources can be shared via orthogonal and non-orthogonal schemes. Motivated by the Industrial Internet of Things (IIoT) paradigm where a large number of sensors may require connectivity with stringent requirements of latency and reliability, we propose and evaluate the joint use of network slicing and Non-Orthogonal Multiple Access (NOMA) with Successive Interference Cancellation (SIC) in two different uplink scenarios. In the first scenario, eMBB coexists with URLLC in the same Radio Access Network (RAN) and, in order to improve the number of concurrent URLLC connections to the same base station (BS), they transmit simultaneously and across multiple frequency channels. In the second scenario, eMBB coexists with mMTC and, to provide connectivity to a massive number of devices, the BS has multiple receive antennas. In both cases, we set the reliability requirements for the services and compare the performance of both orthogonal and non-orthogonal network slicing schemes in terms of maximum achievable data rates and connected users. Our results show that, even with overlapping transmissions from multiple devices, network slicing, NOMA and SIC techniques allow us simultaneously satisfy all the heterogeneous requirements of the 5G services

    On periodic rings and related rings

    Get PDF

    M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): B06104, doi:10.1029/2012JB009260.Geomagnetic polarity time scales (GPTSs) have been constructed by interpolating between dated marine magnetic anomalies assuming uniformly varying spreading rates. A strategy to obtain an optimal GPTS is to minimize spreading rate fluctuations in many ridge systems; however, this has been possible only for a few spreading centers. We describe here a Monte Carlo sampling method that overcomes this limitation and improves GPTS accuracy by incorporating information on polarity chron durations estimated from astrochronology. The sampling generates a large ensemble of GPTSs that simultaneously agree with radiometric age constraints, minimize the global variation in spreading rates, and fit polarity chron durations estimated by astrochronology. A key feature is the inclusion and propagation of data uncertainties, which weigh how each piece of information affects the resulting time scale. The average of the sampled ensemble gives a reference GPTS, and the variance of the ensemble measures the time scale uncertainty. We apply the method to construct MHTC12, an improved version of the M-sequence GPTS (Late Jurassic-Early Cretaceous, ~160–120 Ma). This GPTS minimizes the variation in spreading rates in a global data set of magnetic lineations from the Western Pacific, North Atlantic, and Indian Ocean NW of Australia, and it also accounts for the duration of five polarity chrons established from astrochronology (CM0r through CM3r). This GPTS can be updated by repeating the Monte Carlo sampling with additional data that may become available in the future.A.M. and J.H. were supported by NSF grant OCE 09–26306, M.T. was supported by a Woods Hole Oceanographic Institution postdoctoral scholarship, and J.E.T.C. was supported by NSF grant OCE 09–60999.2012-12-3

    The Nucleosynthetic Imprint of 15-40 Solar Mass Primordial Supernovae on Metal-Poor Stars

    Full text link
    The inclusion of rotationally-induced mixing in stellar evolution can alter the structure and composition of presupernova stars. We survey the effects of progenitor rotation on nucleosynthetic yields in Population III and II supernovae using the new adaptive mesh refinement (AMR) code CASTRO. We examine spherical explosions in 15, 25 and 40 solar mass stars at Z = 0 and 10^-4 solar metallicity with three explosion energies and two rotation rates. Rotation in the Z = 0 models resulted in primary nitrogen production and a stronger hydrogen burning shell which led all models to die as red supergiants. On the other hand, the Z=10^-4 solar metallicity models that included rotation ended their lives as compact blue stars. Because of their extended structure, the hydrodynamics favors more mixing and less fallback in the metal free stars than the Z = 10^-4 models. As expected, higher energy explosions produce more enrichment and less fallback than do lower energy explosions, and less massive stars produce more enrichment and leave behind smaller remnants than do more massive stars. We compare our nucleosynthetic yields to the chemical abundances in the three most iron-poor stars yet found and reproduce the abundance pattern of one, HE 0557-4840, with a zero metallicity 15 solar mass, 2.4 x 10^51 erg supernova. A Salpeter IMF averaged integration of our yields for Z=0 models with explosion energies of 2.4x10^51 ergs or less is in good agreement with the abundances observed in larger samples of extremely metal-poor stars, provided 15 solar mass stars are included. Since the abundance patterns of extremely metal-poor stars likely arise from a representative sample of progenitors, our yields suggest that low-mass supernovae contributed the bulk of the metals to the early universe.Comment: 16 pages, 11 figures; submitted to Ap

    Picosecond strain dynamics in Ge2_{2}Sb2_{2}Te5_{5} monitored by time-resolved x-ray diffraction

    Full text link
    Coherent phonons (CP) generated by laser pulses on the femtosecond scale have been proposed as a means to achieve ultrafast, non-thermal switching in phase-change materials such as Ge2_{2}Sb2_{2}Te5_{5}(GST). Here we use ultrafast optical pump pulses to induce coherent acoustic phonons and stroboscopically measure the corresponding lattice distortions in GST using 100 ps x-ray pulses from the ESRF storage ring. A linear-chain model provides a good description of the observed changes in the diffraction signal, however, the magnitudes of the measured shifts are too large to be explained by thermal effects alone implying the presence of transient non-equilibrium electron heating in addition to temperature driven expansion. The information on the movement of atoms during the excitation process can lead to greater insight into the possibilities of using CP-induced phase-transitions in GST.Comment: 7 pages, 4 figures, Phys. Rev. B, in pres

    Dynamical Susceptibility in KDP-type Crysals above and below Tc II

    Full text link
    The path probability method (PPM) in the tetrahedron-cactus approximation is applied to the Slater-Takagi model with dipole-dipole interaction for KH2PO4-type hydrogen-bonded ferroelectric crystals in order to derive a small dip structure in the real part of dynamical susceptibility observed at the transition temperature Tc. The dip structure can be ascribed to finite relaxation times of electric dipole moments responsible for the first order transition with contrast to the critical slowing down in the second order transition. The light scattering intensity which is related to the imaginary part of dynamical susceptibility is also calculated above and below the transition temperature and the obtained central peak structure is consistent with polarization fluctuation modes in Raman scattering experiments.Comment: 8 pages, 11 figure

    SN 2006aj Associated with XRF 060218 At Late Phases: Nucleosynthesis-Signature of A Neutron Star-Driven Explosion

    Get PDF
    Optical spectroscopy and photometry of SN 2006aj have been performed with the Subaru telescope at t > 200 days after GRB060218, the X-ray Flash with which it was associated. Strong nebular emission-lines with an expansion velocity of v ~ 7,300 km/s were detected. The peaked but relatively broad [OI]6300,6363 suggests the existence of ~ 2 Msun of materials in which ~1.3 Msun is oxygen. The core might be produced by a mildly asymmetric explosion. The spectra are unique among SNe Ic in (1) the absence of [CaII]7291,7324 emission, and (2) a strong emission feature at ~ 7400A, which requires ~ 0.05 Msun of newly-synthesized 58Ni. Such a large amount of stable neutron-rich Ni strongly indicates the formation of a neutron star. The progenitor and the explosion energy are constrained to 18 Msun < Mms < 22 Msun and E ~ (1 - 3) 10^{51} erg, respectively.Comment: Accepted for Publication in the Astrophysical Journal Letters (2007, ApJ, 658, L5). 8 pages, including 1 table and 3 figures. Typos correcte

    The hyperon-nucleon interaction: conventional versus effective field theory approach

    Get PDF
    Hyperon-nucleon interactions are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. With regard to meson-exchange hyperon-nucleon models we focus on the new potential of the Juelich group, whose most salient feature is that the contributions in the scalar--isoscalar (\sigma) and vector--isovector (\rho) exchange channels are constrained by a microscopic model of correlated \pi\pi and KKbar exchange.Comment: 28 pages, 8 figures, submitted to Lecture Notes in Physic
    • …
    corecore