4,844 research outputs found

    Observation of Magnetic Edge State and Dangling Bond State on Nanographene in Activated Carbon Fibers

    Full text link
    The electronic structure of nanographene in pristine and fluorinated activated carbon fibers (ACFs) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) and compared with magnetic properties we reported on previously. In pristine ACFs in which magnetic properties are governed by non-bonding edge states of the \pi-electron, a pre-peak assigned to the edge state was observed below the conduction electron {\pi}* peak close to the Fermi level in NEXAFS. Via the fluorination of the ACFs, an extra peak, which was assigned to the \sigma-dangling bond state, was observed between the pre-peak of the edge state and the {\pi}* peak in the NEXAFS profile. The intensities of the extra peak correlate closely with the spin concentration created upon fluorination. The combination of the NEXAFS and magnetic measurement results confirms the coexistence of the magnetic edge states of \pi-electrons and dangling bond states of \sigma-electrons on fluorinated nanographene sheets.Comment: 4 figures, to appear in Phys. Rev.

    Persistent Currents in the Presence of a Transport Current

    Get PDF
    We have considered a system of a metallic ring coupled to two electron reservoirs. We show that in the presence of a transport current, the persistent current can flow in a ring, even in the absence of magnetic field. This is purely a quantum effect and is related to the current magnification in the loop. These persistent currents can be observed if one tunes the Fermi energy near the antiresonances of the total transmission coefficient or the two port conductance.Comment: To appear in Phys. Rev. B. Three figures available on reques

    A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem

    Get PDF
    <div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div

    Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod — possible control of iron sulfide biomineralization by the animal

    Get PDF
    A gastropod from a deep-sea hydrothermal field at the Rodriguez triple junction, Indian Ocean, has scale-shaped structures, called sclerites, mineralized with iron sulfides on its foot. No other organisms are known to produce a skeleton consisting of iron sulfides. To investigate whether iron sulfide mineralization is mediated by the gastropod for the function of the sclerites, we performed a detailed physical and chemical characterization. Nanostructural characterization of the iron sulfide sclerites reveals that the iron sulfide minerals pyrite (FeS2) and greigite (Fe3S4) form with unique crystal habits inside and outside of the organic matrix, respectively. The magnetic properties of the sclerites, which are mostly consistent with those predicted from their nanostructual features, are not optimized for magnetoreception and instead support use of the magnetic minerals as structural elements. The mechanical performance of the sclerites is superior to that of other biominerals used in the vent environment for predation as well as protection from predation. These characteristics, as well as the co-occurrence of brachyuran crabs, support the inference that the mineralization of iron sulfides might be controlled by the gastropod to harden the sclerites for protection from predators. Sulfur and iron isotopic analyses indicate that sulfur and iron in the sclerites originate from hydrothermal fluids rather than from bacterial metabolites, and that iron supply is unlikely to be regulated by the gastropod for iron sulfide mineralization. We propose that the gastropod may control iron sulfide mineralization by modulating the internal concentrations of reduced sulfur compounds

    Heavy Ion Physics at the LHC with the ATLAS Detector

    Get PDF
    The ATLAS detector at CERN will provide a high-resolution longitudinally-segmented calorimeter and precision tracking for the upcoming study of heavy ion collisions at the LHC (sqrt(s_NN)=5520 GeV). The calorimeter covers |eta|<5 with both electromagnetic and hadronic sections, while the inner detector spectrometer covers |eta|<2.5. ATLAS will study a full range of observables necessary to characterize the hot and dense matter formed at the LHC. Global measurements (particle multiplicities, collective flow) will provide access into its thermodynamic and hydrodynamic properties. Measuring complete jets out to 100's of GeV will allow detailed studies of energy loss and its effect on jets. Quarkonia will provide a handle on deconfinement mechanisms. ATLAS will also study the structure of the nucleon and nucleus using forward physics probes and ultraperipheral collisions, both enabled by segmented Zero Degree Calorimeters.Comment: 9 pages, 8 figures, submitted to the Proceedings of Quark Matter 2006, Shanghai, China, November 14-20, 200

    Spatial variation of subduction zone fluids during progressive subduction: Insights from Serpentinite Mud Volcanoes

    Get PDF
    Geological processes at subduction zones control seismicity, plutonism and volcanism, and geochemical cycling between the oceans, crust, and mantle. The down-going plate experiences metamorphism, and the associated dehydration and fluid flow alters the physical properties of the plate interface and mantle wedge, as well as controlling the composition of material descending into the mantle. Any direct study of slab evolution during subduction is inhibited by the prohibitive depths at which these processes occur. To examine these processes we use serpentinite mud volcanoes in the Mariana forearc, that permit sampling of serpentinite materials and their pore waters that ascend from the subduction channel. We present new pore water chemical data from the summit and flanks of three serpentinite mud volcanoes that were drilled during International Ocean Discovery Program Expedition 366 which are reflective of reactions within the crust and mantle during the early, shallow (<20 km) stages of subduction. We show, via thermodynamic modelling, that our new data on the evolution of pore water chemical compositions reflect mineralogical characteristics of a predominately basaltic source from the downgoing Pacific Plate. However, a component from sedimentary sources is likely, especially for those mud volcanoes near the trench. Other potential slab-derived constituents, such as lithospheric serpentinite, carbonate-rich sediments, or seamount basalts with an intraplate geochemical character, are not required to explain our results. Our results indicate that with progressive subduction the lawsonite-epidote mineral transformation boundary at ∼250 °C may help drive slab carbonate destabilisation, despite its apparent thermodynamic stability at such temperatures and projected pressures (∼300 °C and ∼0.6 GPa). New dissolved gas data also point to primary thermodynamic controls over methane/ethane production within the subduction channel as depths-to-slab increase. Our findings provide direct evidence for the progressive mineralogical and chemical evolution of a subducting oceanic plate, which liberates a progressively evolving fluid phase into the subduction channel

    DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis

    Get PDF
    DAP12 (KARAP) is a transmembrane signaling adaptor for a family of innate immunoreceptors that have been shown to activate granulocytes and monocytes/macrophages, amplifying production of inflammatory cytokines. Contrasting with these data, recent studies suggest that DAP12 signaling has an inhibitory role in the macrophage response to microbial products (Hamerman, J.A., N.K. Tchao, C.A. Lowell, and L.L. Lanier. 2005. Nat. Immunol. 6:579–586). To determine the in vivo role for DAP12 signaling in inflammation, we measured the response of wild-type (WT) and DAP12−/− mice to septic shock. We show that DAP12−/− mice have improved survival from both endotoxemia and cecal ligation and puncture–induced septic shock. As compared with WT mice, DAP12−/− mice have decreased plasma cytokine levels and a decreased acute phase response during sepsis, but no defect in the recruitment of cells or bacterial control. In cells isolated after sepsis and stimulated ex vivo, DAP12 signaling augments lipopolysaccharide-mediated cytokine production. These data demonstrate that, during sepsis, DAP12 signaling augments the response to microbial products, amplifying inflammation and contributing to mortality

    Physics of the Muon Spectrometer of the ALICE Experiment

    Full text link
    The main goal of the Muon spectrometer of the ALICE experiment at LHC is the measurement of heavy quark production in p+p, p+A and A+A collisions at LHC energies, via the muonic channel. Physics motivations and expected performances have been presented in this talk.Comment: 10 pages and 4 figures. Talk presented in the ICPAQGP Conference, February 8-12, 2005, Salt Lake City, Kolkata, India. Web page of the conference : http://www.veccal.ernet.in/~icpaqgp

    Primary Gastrointestinal Diffuse Large B Cell Lymphoma Presenting with Cold Agglutinin Disease

    Get PDF
    Cold agglutinin disease (CAD) is an autoimmune hemolytic anemia (AIHA) generally caused by IgM autoantibodies which exhibit maximal reactivity at 4°C. CAD can be idiopathic or secondary to some diseases and/or conditions. Only a minority of cases of secondary AIHA in non-Hodgkin's lymphoma (NHL) are associated with cold antibodies. Diffuse large B cell lymphoma (DLBCL) is the most common subtype of NHLs with a proportion of nearly 30% of all adult cases. 40% of patients with DLBCL have an extranodal disease or at least disease initially confined to extranodal sites. The most common extranodal site is the gastrointestinal tract. We present a patient with primary gastrointestinal DLBCL who presented with CAD and was treated with a CHOP-Rituximab regimen
    corecore