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Abstract

We have considered a system of a metallic ring coupled to two electron

reservoirs. We show that in the presence of a transport current, the persistent

current can flow in a ring, even in the absence of magnetic field. This is

purely a quantum effect and is related to the current magnification in the

loop. These persistent currents can be observed if one tunes the Fermi energy

near the antiresonances of the total transmission coefficient or the two port

conductance.
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Experimental and theoretical research in mesoscopic systems have provided an opportu-

nity of exploring truely quantum mechanical effects beyond the atomic realm[1]. Persistent

currents in small metal rings threaded by magnetic flux are a manifestation of quantum

effects in submicron systems and are prominent amongst the mesoscopic effects. Prior to

the experimental observations[2-4], Büttiker, Imry and Landauer in their work suggested the

existence of persistent currents in an ordered one dimensional ring threaded by a magnetic

flux[5]. The coherent wavefunctions extending over the whole circumference of the loop

leads to a periodic persistent current. General quantum mechanical principles require that

the wave functions, eigenvalues and hence all observables be periodic in a flux φ threaded

by the loop with a period φ0, φ0 = hc/e being the elementary flux quantum. The magnetic

field destroys the time reversal symmetry and as a consequence the degeneracy of the states

carrying current clockwise and anticlockwise, is lifted. Depending on the position of the

Fermi level, uncompensated current flows in either of the directions(diamagnetic or param-

agnetic). For an ideal isolated ring without impurities and at zero temperature the nature

of the persistent current depends on the total number N of the electrons and the persistent

current exhibits a saw tooth type behavior as a function of magnetic flux. For N even, the

jump discontinuities occur from the values -(2evf/L) to (2evf/L) at φ=0, ±φ0,±2φ0 and at

φ=±φ0/2,±3φ0/2 etc, for N odd. Here vf is the Fermi velocity and L is the circumference

of the ring. Studies have been extended to include multichannel rings, disorder, spin-orbit

coupling and electron-electron interaction effects[6-12]. The persistent current which flows

without dissipation is an equilibrium property of the ring and is given by flux derivative of

the total energy of the ring. These currents can also be thought to arise from the competing

requirements of minimising the free energy in the presence of flux and at the same time

maintaining the single valuedness of the wave function. Persistent currents are truely meso-

scopic effects in the sense that they are strongly suppressed when the ring size exceeds the

characteristic dephasing length of the electrons Lφ (i.e., length scale over which the electron

can be considered to be in a pure state).

Theoretical treatments to date have been mostly concentrated on isolated rings. Persis-
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tent currents occur not only in the isolated rings but also in rings connected via leads to

electron reservoirs, namely in open systems[13-19]. In the recent experiment by Mailly et. al,

have measured the persistent current in both closed and open rings[4]. Büttiker gave a first

conceptually simple approach of a small metal loop connected to an electron reservoir (open

system)[13]. The reservoir acts as a source and a sink for electrons and is characterized by

a well defined chemical potential µ, and by definition there is no phase relationship between

the absorbed and emitted electrons by the reservoir. The reservoir acts as an inelastic scat-

terer and as a source of energy dissipation or irreversibility. All the scattering processes in

the leads are assumed to be elastic. Inelastic processes occur only in the reservoir, and hence

there is a complete spatial separation between elastic and inelastic processes. Due to the

presence of inelastic scattering (by definition) in open systems the amplitude of persistent

current is smaller as compared to the closed systems. Weak inelastic scattering does not

destroy the effect leading to persistent currents. We have extended Büttikers discussions to

a case wherein electrons from the reservoir enter and leave the ring in a subbarrier regime

characterized by evanescent modes throughout the circumference of the loop[17]. In this sit-

uation the persistent current arises simultaneously due to two nonclassical effects, namely,

Aharonov-Bohm effect and quantum tunneling. The dependence of the current on the length

of the ring is similar to that arising due to states localized by static disorder. In our recent

work we have calculated the persistent currents in a normal metal loop connected to two

electron reservoirs in the presence of magnetic flux[18]. We have shown that in general the

magnitude of persistent current in a loop depends on the direction of current flow from one

reservoir to the other. Persistent currents in open systems are sensitive to the direction

of current, unlike the physical quantities such as conductance. We hope that this effect is

useful for separating persistent current from other parasital currents(noise) associated with

experimental measurements.

In our present work, we have considered a metallic loop coupled to two electron reservoirs

(characterized by chemical potentials µ1 and µ2) via ideal wires as shown in fig. (1). For the

sake of simplicity we have restricted to the case of one dimensional structure. Length of the
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upper arm of of the loop is l1 and that of the lower arm is l2 such that the circumference of

the ring is L=l1+l2. When the chemical potential µ1 is greater than µ2, the net current flows

from left to right and vice versa when µ2 is greater than µ1. We show that in the presence

of a current flow through the sample (non-equilibrium situation), a net circulating current

current flows in a loop in the absence of magnetic field in certain range of Fermi energies. In

a sense the persistent current is induced by incident carriers. Existence of such currents were

first discussed by Büttiker[14], however, our analysis is qualitatively different from that of

an earlier study. The current injected by the reservoir into the lead around the small energy

interval dE is given by dIin= ev(dn/dE)f(E)dE. Here v=h̄ k/m is the velocity of the carriers

at the energy E, (dn/dE)=1/(2πh̄v) is the density of states in the perfect wire and f(E)

is the Fermi distribution. The total current flow I in a small energy interval dE through

the system is given by the current injected into the leads by reservoirs multiplied by the

transmission coefficient T. This current splits into I1 and I2 in the upper and the lower arms

respectively at the junction, such that I=I1 + I2 (conservation of current or Kirchoff’s law).

Since the upper and lower arm lengths are unequal, in general these two currents differ in

magnitude. Büttiker[14], suggests a picture for this difference as arising due to a circulating

current I0, such that the current in the upper branch is then given by I1 = I/2 + I0 and

current in the lower branch is given by I2 = I/2 − I0. Such a construction always results

in a persistent current. However, if this definition is taken seriously then even in a classical

loop with different resistances in different arms one gets different currents in the presence of

a dc current and hence persistent current. It is clear then that with this definition one can

get persistent currents even classically without invoking quantum mechanics at all. In our

present quantum problem when one calculates the currents (I1, I2) in two loops there exists

two distinct possibilities. The first possibility being for a certain range of incident Fermi

wave vectors (or energies) the current in the two arms I1 and I2 are individually less than

the total currentI, such that I=I1 + I2. In such a situation both currents in two arms flow

in the direction of applied field. In such a situation we do not assign any persistent current

flowing in the ring. However, in certain energy interval, it turns out that current in one arm
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is larger than the total current I (magnification property). This implies that to conserve the

total current at the junctions, the current in the other arm must be negative, or should flow

against the applied external field induced by difference in the chemical potentials. In such a

situation one can interpret that the negative current flow in one arm of the loop continues

to flow in a loop as a circulating (or persistent) current. Thus the magnitude of persistent

current is the same as that of the negative current. The direction of the persistent current

can be inferred as follows. Consider a case when the net current flows in the right direction

(i.e., µ1 > µ2). If for this case negative current flows in the lower arm then persistent

current flows in clockwise (or positive) direction. If on the other hand negative current flows

in the upper arm then the persistent current flows in a anticlockwise (or negative) direction.

The negative current in one arm of the loop is purely a quantum mechanical effect. Our

procedure of assigning persistent current, only when negative current flows in one of the

arms is exactly the same procedure well known in classical a.c. network analysis[20]. It is

well known that, when a parallel resonant circuit (capacitance C connected in parallel with

combination of inductance L and resistance R) is driven by external electromotive force

(generator), the circulating current arises in LCR circuit at a resonance frequency. This

effect is sometimes referred to as a current magnification. In this classical network when the

external driving frequency is around a resonance frequency circulating currents are possible.

Moreover at the resonance the total net current amplitude in the circuit is at its minimum

value. It turns out that even in our quantum problem the circulating current arises near the

antiresonances (or transmission zeros) of the loop structure coupled to leads.

We now consider a case where the current is injected from the left reservoir (i.e., current

flow is in the right direction). The total current flow around a small energy interval is given

by I=(e/2πh̄)T, where T is the total transmission coefficient. It is a straight forward exercise

to set up a scattering problem for this case and to calculate the transmission coefficient and

the currents in the upper (I1) and the lower (I2) arms. We closely follow our earlier method

of quantum waveguide transport on networks[17,18,21-22] to calculate these quantities. We

have imposed the Griffiths boundary conditions (conservation of current) and single valued-
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ness of the wavefunctions at the junctions. For details see ref[17,18,21-23]. The expressions

for I, T, I1, I2 are given by

I = (e/2πh̄)T (1)

T = (8(2 − cos[2kl1] − cos[2kl2] + 4sin[kl1]sin[kl2]))/Ω (2)

I1 = (e/2πh̄)8(1 − cos[2kl2] + 2sin[kl1]sin[kl2])/Ω (3)

I2 = (e/2πh̄)8(1 − cos[2kl1] + 2sin[kl1]sin[kl2])/Ω (4)

where

Ω = (37 − 5cos[2kl1] − 32cos[kl1]cos[kl2] − 5cos[2kl2]+

5cos[2kl1]cos[2kl2] + 48sin[kl1]sin[kl2] − 4sin[2kl1]sin[2kl2]) (5)

Here k is the incident wave vector. Our expression for the transmission coefficient agrees with

the earlier known expression[23] for the case of l1 = l2. The transmission coefficient across

a metallic loop connected to two reservoirs and in the presence of magnetic flux has been

investigated by several authors[24,25] in connection with the Aharonov Bohm effect. We have

first studied the behavior of the currents I1 and I2 as a function of the Fermi wavevectors. We

then identify the wavevector intervals, wherein either I1 or I2 flows in the negative direction

and by knowing their magnitudes we have calculated the persistent currents as described

in the earlier paragraphs. In fig. (2) we have plotted the circulating currents (solid curves)

in the dimensionless units (Ic ≡ 2πh̄Ic/e) in the small energy interval dE around the Fermi

energy as a function of dimensionless wave vector kL. We have taken l1/l2=5.0/3.0. In fig.

(2) we have also plotted the transmission coefficient T for the same parameter values. We

notice that the persistent current changes sign as we cross the energy or the wave vector at

the first antiresonance (transmission zero or minimum) in the transmission coefficient. It
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does not change the sign as we cross the second antiresonance. The first antiresonance is

characterized by a asymmetric zero-pole in the transmission amplitude (zero occurs at a value

of kL=(2π) and poles are given by kL= (6.25495-i 0.299976) and (6.46865-i 1.90045)). The

proximity of the zero and the pole lead to the sharp variations in the transmission coefficient

around the magnitude zero as a function of energy and lead to a asymmetrical behavior in the

transmission coefficient (around antiresonance), sometimes termed as a Fano resonance[26].

The second antiresonance is characterized by a zero along with symmetrically placed two

poles and the transmission coefficient is symmetric around the antiresonance. The zero is at

a value kL=(4π) and poles are given by kL=(12.4105-i 1.07584) and (12.7222-i 1.07584). We

have thus shown that the persistent current arises near the vicinity of the antiresonances and

the nature of the persistent current as we cross the antiresonance depends on the zero-pole

structure in the transmission amplitude around the antiresonance.

In fig. (3) we have plotted the persistent currents in dimensionless units (solid curves)

and transmission coefficient (dashed curves) versus kL for a case when l1/l2=(3.0). For

this particular case the transmission coefficient is symmetric around the antiresonances and

persistent current does not change the sign as we cross the antiresonance. In general the

zero-pole structure in the transmission coefficient is sensitive to the ratio l1/l2, being com-

mensurate or not. For incommensurate ratio we mostly obtain the Fano type antiresonances.

For commensurate case depending on the degree of commensuration we can have both Fano

type as well as symmetric antiresonances. The magnitude and the width of the persistent

current peak in the vicinity of antiresonances depends on the strength of the imaginary part

of the pole. If the two poles have different imaginary parts, the peak value of the persistent

current will be higher (along with smaller width) for the persistent current behavior near

the pole with smaller imaginary part as compared to the larger one.

We have shown above that the persistent currents can arise in absence of magnetic field

in a open loop connected to two reservoirs in the presence of a transport current. For fixed

value of Fermi energy the persistent currents changes sign as we change the direction of the

current flow. In equilibrium (i.e., µ1 = µ2) we do not get any persistent currents in the
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absence of magnetic field. In the nonequilibrium situation (i.e., µ1 6= µ2) it is possible to

observe the persistent currents. If µ1 > µ2, then at the zero temperature the total magnitude

of the persistent current is given by IT =
∫ µ2

µ1
IcdE. Experimentally it is possible to observe

these currents if one tunes the Fermi energy around the antiresonances in the two port

conductance (or transmission coefficient). Moreover it is better to tune the Fermi energy

around the symmetric antiresonance so that at finite temperature the effect survives, i.e.,

the current on both sides of this antiresonance has same sign and hence finite temperature

does not lead to cancellations as against the case of Fermi energy around asymmetrical

antiresonances.
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