86 research outputs found

    Episyenites—Characteristics, Genetic Constraints, and Mineral Potential

    Get PDF
    Episyenites are sub-solidus, quartz-depleted alkali-feldspar-rich rocks. They form veins and lenticular bodies in granitoid rocks and migmatites in a late- to post-orogenic or anorogenic setting. Leaching of quartz is usually a response to a flux of weakly saline hydrothermal solution in circulation cells above cooling intrusions, where sufficient fluid-rock ratios and thermal gradients are achieved. Fluid Si-undersaturation is achieved by rapid cooling within the field of retrograde Si solubility or by temperature and pressure increase outside retrograde conditions. Some quartz may also be consumed in metasomatic reactions and in response to pressure fluctuation in sealed episyenite bodies. The small size and overall rarity of episyenites imply that conditions for episyenite formation are not commonly encountered in the crust. In addition to quartz depletion, episyenites record complex histories of metasomatic alteration and hydrothermal mineral growth. Nearly all episyenites have undergone Na-metasomatism, which may have led to the formation of nearly monomineralic albitite, and which is occasionally followed by late K-metasomatism, phyllic alteration, and argillization. Depending on the effectiveness of later compaction, recrystallization and vug-filling episyenites may preserve the macroscopic porosity formed by quartz dissolution and brittle deformation. Vuggy episyenites can act as significant sinks for metals carried by crustal fluids and host many significant U, Sn, and Au deposits worldwide. Rare earth-critical syenitic fenites around alkaline intrusions share mineralogical and genetic traits with episyenites.Peer reviewe

    Preterm birth and subsequent timing of pubertal growth, menarche, and voice break

    Get PDF
    Background: We evaluated pubertal growth and pubertal timing of participants born preterm compared to those born at term. Methods: In the ESTER Preterm Birth Study, we collected growth data and measured final height of men/women born very or moderately preterm (<34 gestational weeks, n = 52/55), late preterm (34–<37 weeks, 94/106), and term (≥37 weeks, 131/151), resulting in median 9 measurements at ≥6 years. Timing of menarche or voice break was self-reported. Peak height velocity (PHV, cm/year) and age at PHV (years) were compared with SuperImposition by Translation And Rotation (SITAR) model (sexes separately). Results: Age at PHV (years) and PHV (cm/year) were similar in all gestational age groups. Compared to term controls, insignificant differences in age at PHV were 0.1 (95% CI: −0.2 to 0.4) years/0.2 (−0.1 to 0.4) for very or moderately/late preterm born men and −0.0 (−0.3 to 0.3)/−0.0 (−0.3 to 0.2) for women, respectively. Being born small for gestational age was not associated with pubertal growth. Age at menarche or voice break was similar in all the gestational age groups. Conclusions: Timing of pubertal growth and age at menarche or voice break were similar in participants born preterm and at term

    The microstructure and technological properties of ultra high strength 1100MPa grade strip steel

    Get PDF
    The article describes the microstructure and the technological properties of a direct quenched ultrahighstrength strip steel with the minimum specific yield strength of 1100MPa. The microstructure of thislow carbon, Mn-Cr-Mo-Cu-Ni alloyed steel consists mainly of auto-tempered lath martensite. Due to thesophisticated thermo-mechanical controlled processing schedule, the martensite transformation takesplace from a fine and uniform austenite grain structure. State-of-the-art steelmaking and continuous castingoperations guarantee a good inclusion cleanness and low level of segregation. The steel has excellent impactand fracture toughness properties with respect to its ultra-high strength level. The determined transitiontemperature for 28J in Charpy-V test and fracture toughness characteristic temperature, T0, were below-100°C. The weldability tests indicated that the impact toughness of the heat affected zone (HAZ) is excellentand there is no significant softening in the HAZ or in the welded joint in the wide range of t8/5 cooling times.The steel allows crack-free bending with a minimum inside bending radius equal to 3 times material thicknessirrespective of the bending direction. In addition, the steel has a good resistance to atmospheric corrosion

    Chloroquine and Its Derivatives Exacerbate B19V-Associated Anemia by Promoting Viral Replication

    Get PDF
    Human parvovirus B19 (B19V) is typically associated with a childhood febrile illness known as erythema infectiosum. The infection usually resolves without consequence in healthy individuals. However, in patients with immunologic and/or hematologic disorders, B19V can cause a significant pathology. The virus infects and kills red cell precursors but anemia rarely supervenes unless there is pre-existing anemia such as in children living in malaria-endemic regions. The link between B19V infection and severe anemia has, however, only been confirmed in certain malaria-endemic countries in parallel with chloroquine (CQ) usage. This raises the possibility that CQ may increase the risk of severe anemia by promoting B19V infection. To test this hypothesis, we examined the direct effect of CQ and other commonly used antimalarial drugs on B19V infection in cultured cell lines. Additionally, we examined the correlation between B19V infection, hemoglobin levels and use of CQ in children from Papua New Guinea hospitalized with severe anemia. The results suggest strongly that CQ and its derivatives aggravate B19V-associated anemia by promoting B19V replication. Hence, careful consideration should be given in choosing the drug partnering artemisinin compounds in combination antimalarial therapy in order to minimize contribution of B19V to severe anemia

    Future HAB science: Directions and challenges in a changing climate

    Get PDF
    There is increasing concern that accelerating environmental change attributed to human-induced warming of the planet may substantially alter the patterns, distribution and intensity of Harmful Algal Blooms (HABs). Changes in temperature, ocean acidification, precipitation, nutrient stress or availability, and the physical structure of the water column all influence the productivity, composition, and global range of phytoplankton assemblages, but large uncertainty remains about how integration of these climate drivers might shape future HABs. Presented here are the collective deliberations from a symposium on HABs and climate change where the research challenges to understanding potential linkages between HABs and climate were considered, along with new research directions to better define these linkages. In addition to the likely effects of physical (temperature, salinity, stratification, light, changing storm intensity), chemical (nutrients, ocean acidification), and biological (grazer) drivers on microalgae (senso lato), symposium participants explored more broadly the subjects of cyanobacterial HABs, benthic HABs, HAB effects on fisheries, HAB modelling challenges, and the contributions that molecular approaches can bring to HAB studies. There was consensus that alongside traditional research, HAB scientists must set new courses of research and practices to deliver the conceptual and quantitative advances required to forecast future HAB trends. These different practices encompass laboratory and field studies, long-term observational programs, retrospectives, as well as the study of socioeconomic drivers and linkages with aquaculture and fisheries. In anticipation of growing HAB problems, research on potential mitigation strategies should be a priority. It is recommended that a substantial portion of HAB research among laboratories be directed collectively at a small sub-set of HAB species and questions in order to fast-track advances in our understanding. Climate-driven changes in coastal oceanographic and ecological systems are becoming substantial, in some cases exacerbated by localized human activities. That, combined with the slow pace of decreasing global carbon emissions, signals the urgency for HAB scientists to accelerate efforts across disciplines to provide society with the necessary insights regarding future HAB trends

    Trafficking of Sendai Virus Nucleocapsids Is Mediated by Intracellular Vesicles

    Get PDF
    Paramyxoviruses are assembled at the plasma membrane budding sites after synthesis of all the structural components in the cytoplasm. Although viral ribonuclocapsid (vRNP) is an essential component of infectious virions, the process of vRNP translocation to assembly sites is poorly understood.To analyze real-time trafficking of vRNPs in live infected cells, we created a recombinant Sendai virus (SeV), rSeVLeGFP, which expresses L protein fused to enhanced green fluorescent protein (eGFP). The rSeVLeGFP showed similar growth kinetics compared to wt SeV, and newly synthesized LeGFP could be detected as early as 8 h postinfection. The majority of LeGFP co-localized with other components of vRNPs, NP and P proteins, suggesting the fluorescent signals of LeGFP represent the locations of vRNPs. Analysis of LeGFP movement using time-lapse digital video microscopy revealed directional and saltatory movement of LeGFP along microtubules. Treatment of the cells with nocodazole restricted vRNP movement and reduced progeny virion production without affecting viral protein synthesis, suggesting the role of microtubules in vRNP trafficking and virus assembly. Further study with an electron microscope showed close association of vRNPs with intracellular vesicles present in infected cells. In addition, the vRNPs co-localized with Rab11a protein, which is known to regulate the recycling endocytosis pathway and Golgi-to-plasma membrane trafficking. Simultaneous movement between LeGFP and Rab11a was also observed in infected cells, which constitutively express mRFP-tagged Rab11a. Involvement of recycling endosomes in vRNP translocation was also suggested by the fact that vRNPs move concomitantly with recycling transferrin labeled with Alexa 594.Collectively, our results strongly suggest a previously unrecognized involvement of the intracellular vesicular trafficking pathway in vRNP translocation and provide new insights into the transport of viral structural components to the assembly sites of enveloped viruses

    Status of Biodiversity in the Baltic Sea

    Get PDF
    The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity

    Mouse Hepatitis Coronavirus RNA Replication Depends on GBF1-Mediated ARF1 Activation

    Get PDF
    Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected
    • …
    corecore