159 research outputs found

    Structure and dielectric response in the high TcT_c ferroelectric Bi(Zn,Ti)O3_3-PbTiO3_3 solid solutions

    Full text link
    Theoretical {\em ab initio} and experimental methods were used to investigate the xxBi(Zn,Ti)O3_3-(1-xx)PbTiO3_3 (BZT-PT) solid solution. We find that hybridization between Zn 4pp and O 2pp orbitals allows the formation of short, covalent Zn-O bonds, enabling favorable coupling between A-site and B-site displacements. This leads to large polarization, strong tetragonality and an elevated ferroelectric to paraelectric phase transition temperature. nhomogeneities in local structure near the 90^\circ domain boundaries can be deduced from the asymetric peak broadening in the neutron and x-ray diffraction spectra. These extrinsic effects make the ferroelectric to paraelectric phase transition diffuse in BZT-PT solid solutions

    Synchronous population fluctuations of forest and field voles: implications for population management

    Get PDF
    Tkadlec, E., Suchomel, J., Purchart, L., Heroldová, M., Čepelka, L., Homolka, M

    Structure and Polarization in the High T\u3csub\u3ec\u3c/sub\u3e Ferroelectric Bi(Zn,Ti)O\u3csub\u3e3\u3c/sub\u3e-PbTiO\u3csub\u3e3\u3c/sub\u3e Solid Solutions

    Get PDF
    Theoretical ab initio and experimental methods are used to investigate the [Bi(Zn1/2Ti1/2)O3]x [PbTiO3]1-x solid solution. We find that hybridization between Zn 4s and 4p and O 2p orbitals allows the formation of short, covalent Zn-O bonds, enabling favorable coupling between A-site and B-site displacements. This leads to unusually large polarization, strong tetragonality, and an elevated ferroelectric to paraelectric phase transition temperature

    Vole impact on tree regeneration: insights into forest management

    Get PDF
    Heroldová, M., Homolka, M., Tkadlec, E., Kamler, J., Suchomel, J., Purchart, L., Krojerová, J., Barančeková, M., Turek, K., Baňař, M

    Charge disproportionation and the pressure-induced insulator?metal transition in cubic perovskite PbCrO3

    Get PDF
    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations.Fil: Cheng, Jinguang. University Of Texas At Austin; Estados Unidos. Chinese Academy Of Sciences; República de China. University of Tokyo. Institute for Solid State Physics; JapónFil: Kweon, K. E.. University Of Texas At Austin; Estados UnidosFil: Larregola, Sebastian Alberto. University Of Texas At Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Ding, Yang. Argonne National Laboratory; Estados UnidosFil: Shirako, Y.. University Of Texas At Austin; Estados UnidosFil: Marshall, L. G.. University Of Texas At Austin; Estados Unidos. Northeastern University; Estados UnidosFil: Li, Z. Y.. University Of Texas At Austin; Estados UnidosFil: Li, X.. University Of Texas At Austin; Estados UnidosFil: Dos Santos, António M.. Oak Ridge National Laboratory. Quantum Condensed Matter Division; Estados UnidosFil: Suchomel, M. R.. Argonne National Laboratory; Estados UnidosFil: Matsubayashi, K.. University of Tokyo. Institute for Solid State Physics; JapónFil: Uwatoko, Y.. University of Tokyo. Institute for Solid State Physics; JapónFil: Hwang, G. S.. University Of Texas At Austin; Estados UnidosFil: Goodenough, John B.. University Of Texas At Austin; Estados UnidosFil: Zhou, J. S.. University Of Texas At Austin; Estados Unido

    Photon-number-resolved measurement of an exciton-polariton condensate

    Get PDF
    We measure the full photon-number distribution emitted from a Bose condensate of microcavity exciton polaritons confined in a micropillar cavity. The statistics are acquired by means of a photon-number-resolving transition edge sensor. We directly observe that the photon-number distribution evolves with the nonresonant optical excitation power from geometric to quasi-Poissonian statistics, which is canonical for a transition from a thermal to a coherent state. Moreover, the photon-number distribution allows one to evaluate the higher-order photon correlations, shedding further light on the coherence formation and phase transition of the polariton condensate. The experimental data are analyzed in terms of thermal-coherent states, which gives direct access to the thermal and coherent fraction from the measured distributions. These results pave the way for a full understanding of the contribution of interactions in light-matter condensates in the coherence buildup at threshold.Ministry of Science and Education of the Russian Federation (Grant No. RFMEFI61617X0085

    Magnetic and structural properties of the iron silicide superconductor LaFeSiH

    Full text link
    The magnetic and structural properties of the recently discovered pnictogen/chalcogen-free superconductor LaFeSiH (Tc10T_c\simeq10~K) have been investigated by 57^{57}Fe synchrotron M{\"o}ssbauer source (SMS) spectroscopy, x-ray and neutron powder diffraction and 29^{29}Si nuclear magnetic resonance spectroscopy (NMR). No sign of long range magnetic order or local moments has been detected in any of the measurements and LaFeSiH remains tetragonal down to 2 K. The activated temperature dependence of both the NMR Knight shift and the relaxation rate 1/T11/T_1 is analogous to that observed in strongly overdoped Fe-based superconductors. These results, together with the temperature-independent NMR linewidth, show that LaFeSiH is an homogeneous metal, far from any magnetic or nematic instability, and with similar Fermi surface properties as strongly overdoped iron pnictides. This raises the prospect of enhancing the TcT_c of LaFeSiH by reducing its carrier concentration through appropriate chemical substitutions. Additional SMS spectroscopy measurements under hydrostatic pressure up to 18.8~GPa found no measurable hyperfine field

    Counter-directional polariton coupler

    Get PDF
    The Wurzburg group acknowledges the financial support by the state of Bavaria and the DFG within the project Schn1376-3.1. J.B. and S.K. acknowledge funding from DFG grant KL3124/2-1. The Madrid team acknowledges financial support by the Spanish MINECO Grants MAT2014-53119-C2-1-R and MAT2017-83722-R.We report on an on-chip routing device for propagating condensates of exciton-polaritons. This counter-directional coupler implements signal control by a photonic microdisk potential, which couples two lithographically defined waveguides and reverses the condensate's propagation direction. By varying the structural sizes, we utilize the conjunction of the different dimensionalities to additionally evidence the functionality of a polaritonic resonant tunnel diode. Furthermore, we show the ultra fast time dynamics of the device via ps-resolved streak camera measurements. This scalable, all-directional coupler element is a central building block for compact non-linear on-chip photonic architectures.PostprintPeer reviewe
    corecore