100 research outputs found

    Yield gaps, nutrient use efficiencies and response to fertilisers by maize across heterogeneous smallholder farms of western Kenya

    Get PDF
    The need to promote fertiliser use by African smallholder farmers to counteract the current decline in per capita food production is widely recognised. But soil heterogeneity results in variable responses of crops to fertilisers within single farms. We used existing databases on maize production under farmer (F-M) and researcher management (R-M) to analyse the effect of soil heterogeneity on the different components of nutrient use efficiency by maize growing on smallholder farms in western Kenya: nutrient availability, capture and conversion efficiencies and crop biomass partitioning. Subsequently, we used the simple model QUEFTS to calculate nutrient recovery efficiencies from the R-M plots and to calculate attainable yields with and without fertilisers based on measured soil properties across heterogeneous farms. The yield gap of maize between F-M and R-M varied from 0.5 to 3 t grain ha-1 season-1 across field types and localities. Poor fields under R-M yielded better than F-M, even without fertilisers. Such differences, of up to 1.1 t ha-1 greater yields under R-M conditions are attributable to improved agronomic management and germplasm. The relative response of maize to N-P-K fertilisers tended to decrease with increasing soil quality (soil C and extractable P), from a maximum of 4.4-fold to -0.5- fold relative to the control. Soil heterogeneity affected resource use efficiencies mainly through effects on the efficiency of resource capture. Apparent recovery efficiencies varied between 0 and 70% for N, 0 and 15% for P, and 0 to 52% for K. Resource conversion efficiencies were less variable across fields and localities, with average values of 97 kg DM kg-1 N, 558 kg DM kg-1 P and 111 kg DM kg-1 K taken up. Using measured soil chemical properties QUEFTS over-estimated observed yields under F-M, indicating that variable crop performance within and across farms cannot be ascribed solely to soil nutrient availability. For the R-M plots QUEFTS predicted positive crop responses to application of 30 kg P ha-1 and 30 kg P ha-1 + 90 kg N ha-1 for a wide range of soil qualities, indicating that there is room to improve current crop productivity through fertiliser use. To ensure their efficient use in sub-Saharan Africa mineral fertilisers should be: (1) targeted to specific niches of soil fertility within heterogeneous farms; and (2) go hand-in-hand with the implementation of agronomic measures to improve their capture and utilisation

    Redefining Case Study

    Get PDF
    Abstract: In this paper the authors propose a more precise and encompass-ing definition of case study than is usually found. They support their defini-tion by clarifying that case study is neither a method nor a methodology nor a research design as suggested by others. They use a case study prototype of their own design to propose common properties of case study and demon-strate how these properties support their definition. Next, they present sev-eral living myths about case study and refute them in relation to their definition. Finally, they discuss the interplay between the terms case study and unit of analysis to further delineate their definition of case study. The target audiences for this paper include case study researchers, research de-sign and methods instructors, and graduate students interested in case study research

    A decision support model for monitoring nutrient balances under agricultural land use (NUTMON)

    No full text
    A quantitative model of the balance between inputs and outputs of nitrogen, phosphorus and potassium in African land use systems (NUTBAL) was recently developed at two scales: supra-national (38 sub-Saharan African countries) and regional (Kisii District, Kenya). Calculating inputs (mineral fertilizer, organic manure, wet and dry deposition, biological nitrogen fixation, sedimentation) and outputs (removal of above-ground crop parts, leaching, denitrification, water erosion) led to the conclusion that there are considerable net fertility losses in each growing period. In this paper, NUTBAL is elaborated into a decision-support model (NUTMON) to monitor the effects of changing land use, and suggest interventions that improve the nutrient balance. As input and output determinants cannot all be quantified equally well, the model recognizes primary data, estimates, and assumptions. The NUTMON determinants are mostly scale-neutral and can therefore be used to monitor nutrient balances at farm, regional, national and supra-national level. This is essential since the hierarchical levels interact. A number of recent interventions at the regional level (Kisii District, Kenya) are elaborated, including national fertilizer and produce price policies, fertilizer supply in small packages, zero-grazing, agroforestry, soil conservation measures, and increasing fertilizer use efficiency. It is shown that a major nutrient conservation effort in Kisii reduces nutrient depletion by approximately 50%, but does not entirely redress the N and K balance. To achieve the latter without reducing crop production, 75% of the district would have to be converted to a rotation system of maize and green manure cover crops, whereas 25% can remain under tea. NUTMON has the potential to become a dynamic tool for land use policies, geared towards a balanced nutrient status in African land use systems. It can assist decision makers in determining the effects of current and alternative land use scenarios, taking account of both the productivity as well as the long-term sustainability of agro-ecosystems
    • …
    corecore