639 research outputs found

    Modeling the drug release from hydrogel-based matrices

    Get PDF
    In this work the behavior of hydrogel-based matrices, the most widespread systems for oral controlled release of pharmaceuticals, has been mathematically described. In addition, the calculations of the model have been validated against a rich set of experimental data obtained working with tablets made of hydroxypropyl methylcellulose (a hydrogel) and theophylline (a model drug). The model takes into account water uptake, hydrogel swelling, drug release, and polymer erosion. The model was obtained as an improvement of a previous code, describing the diffusion in concentrated systems, and obtaining the erosion front (which is a moving boundary) from the polymer mass balance (in this way, the number of fitting parameters was also reduced by one). The proposed model was found able to describe all the observed phenomena, and then it can be considered a tool with predictive capabilities, useful in design and testing of new dosage systems based on hydrogels

    Influence of a knot on the strength of a polymer strand

    Full text link
    Many experiments have been done to determine the relative strength of different knots, and these show that the break in a knotted rope almost invariably occurs at a point just outside the `entrance' to the knot. The influence of knots on the properties of polymers has become of great interest, in part because of their effect on mechanical properties. Knot theory applied to the topology of macromolecules indicates that the simple trefoil or `overhand' knot is likely to be present with high probability in any long polymer strand. Fragments of DNA have been observed to contain such knots in experiments and computer simulations. Here we use {\it ab initio} computational methods to investigate the effect of a trefoil knot on the breaking strength of a polymer strand. We find that the knot weakens the strand significantly, and that, like a knotted rope, it breaks under tension at the entrance to the knot.Comment: 3 pages, 4 figure

    Thermo-responsive Diels-Alder stabilized hydrogels for ocular drug delivery of a corticosteroid and an anti-VEGF fab fragment

    Get PDF
    In the present study, a novel in situ forming thermosensitive hydrogel system was investigated as a versatile drug delivery system for ocular therapy. For this purpose, two thermosensitive ABA triblock copolymers bearing either furan or maleimide moieties were synthesized, named respectively poly(NIPAM-co-HEA/Furan)-PEG 6K-P(NIPAM-co-HEA/Furan) (PNF) and poly(NIPAM-co-HEA/Maleimide)-PEG 6K-P(NIPAM-co-HEA/-Maleimide) (PNM). Hydrogels were obtained upon mixing aqueous PNF and PNM solutions followed by incubation at 37 °C. The hydrogel undergoes an immediate (<1 min) sol-gel transition at 37 °C. In situ hydrogel formation at 37 °C was also observed after intravitreal injection of the formulation into an ex vivo rabbit eye. The hydrogel network formation was due to physical self-assembly of the PNIPAM blocks and a catalyst-free furan-maleimide Diels-Alder (DA) chemical crosslinking in the hydrophobic domains of the polymer network. Rheological studies demonstrated sol-gel transition at 23 °C, and DA crosslinks were formed in time within 60 min by increasing the temperature from 4 to 37 °C. When incubated at 37 °C, these hydrogels were stable for at least one year in phosphate buffer of pH 7.4. However, the gels degraded at basic pH 10 and 11 after 13 and 3 days, respectively, due to hydrolysis of ester bonds in the crosslinks of the hydrogel network. The hydrogel was loaded with an anti-VEGF antibody fragment (FAB; 48.4 kDa) or with corticosteroid dexamethasone (dex) by dissolving (FAB) or dispersing (DEX) in the hydrogel precursor solution. The FAB fragment in unmodified form was quantitatively released over 13 days after an initial burst release of 46, 45 and 28 % of the loading for the 5, 10 and 20 wt% hydrogel, respectively, due to gel dehydration during formation. The low molecular weight drug dexamethasone was almost quantitively released in 35 days. The slower release of dexamethasone compared to the FAB fragement can likely be explained by the solubilization of this hydrophobic drug in the hydrophobic domains of the gel. The thermosensitive gels showed good cytocompatibility when brought in contact with macrophage-like mural cells (RAW 264.7) and human retinal pigment epithelium-derived (ARPE-19) cells. This study demonstrates that PNF-PNM thermogel may be a suitable formulation for sustained release of bioactive agents into the eye for treating posterior segment eye diseases

    Parallel Excluded Volume Tempering for Polymer Melts

    Full text link
    We have developed a technique to accelerate the acquisition of effectively uncorrelated configurations for off-lattice models of dense polymer melts which makes use of both parallel tempering and large scale Monte Carlo moves. The method is based upon simulating a set of systems in parallel, each of which has a slightly different repulsive core potential, such that a thermodynamic path from full excluded volume to an ideal gas of random walks is generated. While each system is run with standard stochastic dynamics, resulting in an NVT ensemble, we implement the parallel tempering through stochastic swaps between the configurations of adjacent potentials, and the large scale Monte Carlo moves through attempted pivot and translation moves which reach a realistic acceptance probability as the limit of the ideal gas of random walks is approached. Compared to pure stochastic dynamics, this results in an increased efficiency even for a system of chains as short as N=60N = 60 monomers, however at this chain length the large scale Monte Carlo moves were ineffective. For even longer chains the speedup becomes substantial, as observed from preliminary data for N=200N = 200

    Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection

    Get PDF
    Cyclodextrin-based hydrogels have been described as suitable for the controlled-release of bioactive molecules to be used as wound dressing. These materials have major advantages, since they gather the hydrogel properties (high degree of swelling and easy manipulation) and the encapsulation ability of cyclodextrins. β-cyclodextrin (β) or hydroxypropyl-β-cyclodextrin (HPβ) was cross-linked (1,4-butanediol diglycidyl ether) with hydroxypropyl methylcellulose under mild conditions. The hydrogels were chemically characterized by swelling degree, FTIR, DSC and contact angle. The gallic acid loading and release was also analysed, as well the antibacterial activity and cytotoxicity of the polymeric networks. The hydrogels obtained were firm and transparent, with good swelling ability. The gel-HPβ had a surface more hydrophilic when compared with the gel-β. Nevertheless, both hydrogels were capable to incorporate gallic acid and sustain the release for 48 h. The antibacterial activity of gallic acid was maintained after its adsorption within the polymeric matrix, as well as, gallic acid effect on fibroblast proliferation. Therefore, gel-β and gel-HPβ conjugated with gallic acid were shown to be a viable option for antibacterial wound dressing.The authors thank the FCT Strategic Projects PEst-OE/EQB/LA0023/2013, PEst-C/CTM/UI0264/2011, the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality'', Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional doNorte (ON.2-ONovoNorte), QREN, FEDER, and E. Pinho grant (SFRH/BD/62665/2009)
    • …
    corecore