14,599 research outputs found
Modulated wavepackets associated with longitudinal dust grain oscillations in a dusty plasma crystal
The nonlinear amplitude modulation of longitudinal dust lattice waves (LDLWs)
propagating in a dusty plasma crystal is investigated in a continuum
approximation. It is shown that long wavelength LDLWs are modulationally
stable, while shorter wavelengths may be unstable. The possibility for the
formation and propagation of different envelope localized excitations is
discussed. It is shown that the total grain displacement bears a (weak)
constant displacement (zeroth harmonic mode), due to the asymmetric form of the
nonlinear interaction potential. The existence of asymmetric envelope localized
modes is predicted. The types and characteristics of these coherent nonlinear
structures are discussed.Comment: 18 pages, 7 figures, to appear in Physics of Plasma
Simulation study of the filamentation of counter-streaming beams of the electrons and positrons in plasmas
The filamentation instability driven by two spatially uniform and
counter-streaming beams of charged particles in plasmas is modelled by a
particle-in-cell (PIC) simulation. Each beam consists of the electrons and
positrons. The four species are equally dense and they have the same
temperature. The one-dimensional simulation direction is orthogonal to the beam
velocity vector. The magnetic field grows spontaneously and rearranges the
particles in space, such that the distributions of the electrons of one beam
and the positrons of the second beam match. The simulation demonstrates that as
a result no electrostatic field is generated by the magnetic field through its
magnetic pressure gradient prior to its saturation. This electrostatic field
would be repulsive at the centres of the filaments and limit the maximum charge
and current density. The filaments of electrons and positrons in this
simulation reach higher charge and current densities than in one with no
positrons. The oscillations of the magnetic field strength induced by the
magnetically trapped particles result in an oscillatory magnetic pressure
gradient force. The latter interplays with the statistical fluctuations in the
particle density and it probably enforces a charge separation, by which
electrostatic waves grow after the filamentation instability has saturated.Comment: 13 pages, 8 figure
A study of the dynamics of the Intertropical Convergence Zone (ITCZ) in a symmetric atmosphere-ocean model
A numerical model of the circulation of a coupled axisymmetric atmosphere-ocean system was constructed to investigate the physical factors governing the location and intensity of the Intertropical Convergence Zone (ITCZ) over oceans and over land. The results of several numerical integrations are presented to illustrate the interaction of the individual atmospheric and oceanic circulations. It is shown that the ITCA cannot be located at the equator because the atmosphere-ocean system is unstable for lateral displacements of the ITCA from an equilibrium position at the equator
Towards a quantum-chemical description of crystalline insulators: A Wannier-function-based Hartree-Fock study of Li2O and Na2O
A recently proposed approach for performing electronic-structure calculations
on crystalline insulators in terms of localized orthogonal orbitals is applied
to the oxides of lithium and sodium, Li2O and Na2O. Cohesive energies, lattice
constants and bulk moduli of the aforementioned systems are determined at the
Hartree-Fock level, and the corresponding values are shown to be in excellent
agreement with the values obtained by a traditional Bloch-orbital-based
Hartree-Fock approach. The present Wannier-function-based approach is expected
to be advantageous in the treatment of electron-correlation effects in an
infinite solid by conventional quantum-chemical methods.Comment: 15 Pages, RevTex, 3 postscript figures (included), to appear in the
Journal of Chemical Physics, May 15, 199
Microstructure of a liquid complex (dusty) plasma under shear
The microstructure of a strongly coupled liquid undergoing a shear flow was
studied experimentally. The liquid was a shear melted two-dimensional plasma
crystal, i.e., a single-layer suspension of micrometer-size particles in a rf
discharge plasma. Trajectories of particles were measured using video
microscopy. The resulting microstructure was anisotropic, with compressional
and extensional axes at around to the flow direction.
Corresponding ellipticity of the pair correlation function or
static structure factor gives the (normalized) shear rate of the
flow.Comment: 5 pages, 6 figure
Exact Solution of Return Hysteresis Loops in One Dimensional Random Field Ising Model at Zero Temperature
Minor hysteresis loops within the main loop are obtained analytically and
exactly in the one-dimensional ferromagnetic random field Ising-model at zero
temperature. Numerical simulations of the model show excellent agreement with
the analytical results
Gauge transformation through an accelerated frame of reference
The Schr\"{o}dinger equation of a charged particle in a uniform electric
field can be specified in either a time-independent or a time-dependent gauge.
The wave-function solutions in these two gauges are related by a phase-factor
reflecting the gauge symmetry of the problem. In this article we show that the
effect of such a gauge transformation connecting the two wave-functions can be
mimicked by the effect of two successive extended Galilean transformations
connecting the two wave-function. An extended Galilean transformation connects
two reference frames out of which one is accelerating with respect to the
other.Comment: 7 Pages, Latex fil
From farmers' fields to data fields and back: A Synthesis of Participatory Information Systems for Irrigation and other Resources: Proceedings of an International Workshop held at the Institute of Agriculture and Animal Science, Rampur, Nepal, 21-26 March 1993
Irrigation / Forestry / Natural resources / Farmer participation / Participatory rural appraisal / Rapid rural appraisal / GIS / Data collection / Databases / Field tests / Farmers' associations / Training / Water rights / Water law / Institutions / Non-governmental organizations / India / Nepal
Spatiotemporal chaos and the dynamics of coupled Langmuir and ion-acoustic waves in plasmas
A simulation study is performed to investigate the dynamics of coupled
Langmuir waves (LWs) and ion-acoustic waves (IAWs) in an unmagnetized plasma.
The effects of dispersion due to charge separation and the density nonlinearity
associated with the IAWs, are considered to modify the properties of Langmuir
solitons, as well as to model the dynamics of relatively large amplitude wave
envelopes. It is found that the Langmuir wave electric field, indeed, increases
by the effect of ion-wave nonlinearity (IWN). Use of a low-dimensional model,
based on three Fourier modes shows that a transition to temporal chaos is
possible, when the length scale of the linearly excited modes is larger than
that of the most unstable ones. The chaotic behaviors of the unstable modes are
identified by the analysis of Lyapunov exponent spectra. The space-time
evolution of the coupled LWs and IAWs shows that the IWN can cause the
excitation of many unstable harmonic modes, and can lead to strong IAW
emission. This occurs when the initial wave field is relatively large or the
length scale of IAWs is larger than the soliton characteristic size. Numerical
simulation also reveals that many solitary patterns can be excited and
generated through the modulational instability (MI) of unstable harmonic modes.
As time goes on, these solitons are seen to appear in the spatially partial
coherence (SPC) state due to the free ion-acoustic radiation as well as in the
state of spatiotemporal chaos (STC) due to collision and fusion in the
stochastic motion. The latter results the redistribution of initial wave energy
into a few modes with small length scales, which may lead to the onset of
Langmuir turbulence in laboratory as well as space plasmas.Comment: 10 Pages, 14 Figures; to appear in Physical Review
Instability and Evolution of Nonlinearly Interacting Water Waves
We consider the modulational instability of nonlinearly interacting
two-dimensional waves in deep water, which are described by a pair of
two-dimensional coupled nonlinear Schroedinger equations. We derive a nonlinear
dispersion relation. The latter is numerically analyzed to obtain the regions
and the associated growth rates of the modulational instability. Furthermore,
we follow the long term evolution of the latter by means of computer
simulations of the governing nonlinear equations and demonstrate the formation
of localized coherent wave envelopes. Our results should be useful for
understanding the formation and nonlinear propagation characteristics of large
amplitude freak waves in deep water.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
- …