135 research outputs found

    Comparison of MRI findings with traditional criteria in diagnosis of Pendred syndrome

    Get PDF
    Pendred syndrome, defined as the constellation of goiter, sensori-neural hearing loss, and positive perchlorate discharge test, is the most frequent cause of congenital deafness. Newly introduced diagnostic approaches to the disease are rather expensive and complicated, therefore we evaluated the value of MRI as the sole, or adjunctive diagnostic approach, and compared it with the traditional ones. Presuming the classic triad as the gold standard, we compared MRI findings in six such defined patients with six cases having goiter, hearing loss, and normal perchlorate discharge test. Our results indicated that MRI was 83.6 sensitive and 66.7 specific in patients fulfilling all three criteria (complete), while in the 'partial' group the sensitivity and specificity were 66.7 and 100 respectively. In conclusion, MRI, although impressive as an adjunctive diagnostic tool, may not replace the holistic approach, and the latter may be more convenient, cheaper, and still more accurate. However in 'partial' cases with equivocal findings, and in relatives of the patients, MRI may be a valuable diagnostic adjunct. © 2007 British Society of Audiology, International Society of Audiology, and Nordic Audiological Society

    A Re-examination of the Portevin-Le Chatelier Effect in Alloy 718 in Connection with Oxidation-Assisted Intergranular Cracking

    Get PDF
    In Alloy 718, a sharp transition exists in the fracture path changing from an intergranular brittle mode to a transgranular ductile mode which is associated with a transition of flow behavior from smooth in the dynamic strain aging regime to a serrated one in the Portevin-Le Chatelier (PLC) regime. In order to better understand both deformation and rupture behavior, PLC phenomenon in a precipitation-hardened nickel-base superalloy was carefully investigated in a wide range of temperatures [573 K to 973 K (300°C to 700°C)] and strain rates (109^-5 to 3.2910^-2 s^-1 ). Distinction was made between two PLC domains characterized by different evolutions of the critical strain to the onset of the first serration namely normal and inverse behavior. The apparent activation energies associated with both domains were determined using different methods. Results showed that normal and inverse behavior domains are related to dynamic interaction of dislocations with, respectively, interstitial and substitutional solutes atoms. This analysis confirms that normal PLC regime may be associated to the diffusion of carbon atoms, whereas the substitutional species involves in the inverse regime is discussed with an emphasis on the role of Nb and Mo

    The role of Zn-OR and Zn-OH nucleophiles and the influence of para-substituents in the reactions of binuclear phosphatase mimetics

    Get PDF
    Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn-2(CH(3)L2)(CH3COO)(2)](PF6), [Zn-2(NO(2)L2)(CH3COO)(2)](PF6), [Zn-2(BrL2)(CH3COO)(2)](PF6) and [Zn-2(CH(3)L3)(CH3COO)(2)](PF6), in addition to [Zn-4(CH(3)L2)(2)(NO2C6H5OPO3)(2)(H2O)(2)](PF6)(2) and [Zn-4(BrL2)(2)(PO3F)(2)(H2O)(2)](PF6)(2). The complexes were characterized using H-1 and C-13 NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl-(L2 ligands) or phenyl-(L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn-2(CH(3)HL1)(CH3COO)(H2O)](PF6). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn-2(CH(3)L2)](+), k(cat) = 5.70 +/- 0.04 x 10(-3) s(-1) (K-m = 20.8 +/- 5.0 mM) and [Zn-2(CH(3)L3)](+), kcat = 3.60 +/- 0.04 x 10(-3) s(-1) (K-m = 18.9 +/- 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat) p-CH3 > p-Br > p-NO2. Use of a solvent mixture containing H2O18/H2O16 in the reaction with BDNPP showed that for [Zn-2(CH(3)L2)(CH3COO)(2)](PF6) and [Zn-2(NO(2)L2)(CH3COO)(2)](PF6), as well as [Zn-2(CH(3)HL1)(CH3COO)(H2O)](PF6), the O-18 label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide)

    Enteric Neural Crest Differentiation in Ganglioneuromas Implicates Hedgehog Signaling in Peripheral Neuroblastic Tumor Pathogenesis

    Get PDF
    Peripheral neuroblastic tumors (PNTs) share a common origin in the sympathetic nervous system, but manifest variable differentiation and growth potential. Malignant neuroblastoma (NB) and benign ganglioneuroma (GN) stand at opposite ends of the clinical spectrum. We hypothesize that a common PNT progenitor is driven to variable differentiation by specific developmental signaling pathways. To elucidate developmental pathways that direct PNTs along the differentiation spectrum, we compared the expression of genes related to neural crest development in GN and NB. In GNs, we found relatively low expression of sympathetic markers including adrenergic biosynthesis enzymes, indicating divergence from sympathetic fate. In contrast, GNs expressed relatively high levels of enteric neuropeptides and key constituents of the Hedgehog (HH) signaling pathway, including Dhh, Gli1 and Gli3. Predicted HH targets were also differentially expressed in GN, consistent with transcriptional response to HH signaling. These findings indicate that HH signaling is specifically active in GN. Together with the known role of HH activity in enteric neural development, these findings further suggested a role for HH activity in directing PNTs away from the sympathetic lineage toward a benign GN phenotype resembling enteric ganglia. We tested the potential for HH signaling to advance differentiation in PNTs by transducing NB cell lines with Gli1 and determining phenotypic and transcriptional response. Gli1 inhibited proliferation of NB cells, and induced a pattern of gene expression that resembled the differential pattern of gene expression of GN, compared to NB (p<0.00001). Moreover, the transcriptional response of SY5Y cells to Gli1 transduction closely resembled the transcriptional response to the differentiation agent retinoic acid (p<0.00001). Notably, Gli1 did not induce N-MYC expression in neuroblastoma cells, but strongly induced RET, a known mediator of RA effect. The decrease in NB cell proliferation induced by Gli1, and the similarity in the patterns of gene expression induced by Gli1 and by RA, corroborated by closely matched gene sets in GN tumors, all support a model in which HH signaling suppresses PNT growth by promoting differentiation along alternative neural crest pathways

    Gene Expression Programs of Mouse Endothelial Cells in Kidney Development and Disease

    Get PDF
    Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease

    Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult

    Get PDF
    The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu intérieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders

    Atomic Species Associated with the Portevin–Le Chatelier Effect in Superalloy 718 Studied by Mechanical Spectroscopy

    Get PDF
    In many Ni-based superalloys, dynamic strain aging (DSA) generates an inhomogeneous plastic deformation resulting in jerky flow known as the Portevin--Le Chatelier (PLC) effect. This phenomenon has a deleterious effect on the mechanical properties and, at high temperature, is related to the diffusion of substitutional solute atoms toward the core of dislocations. However, the question about the nature of the atomic species responsible for the PLC effect at high temperature still remains open. The goal of the present work is to answer this important question; to this purpose, three different 718-type and a 625 superalloy were studied through a nonconventional approach by mechanical spectroscopy. The internal friction (IF) spectra of all the studied alloys show a relaxation peak P718 (at 885 K for 0.1 Hz) in the same temperature range, 700 K to 950 K, as the observed PLC effect. The activation parameters of this relaxation peak have been measured, Ea(P718){\thinspace}={\thinspace}2.68{\thinspace}{\textpm}{\thinspace}0.05 eV, τ\tau0{\thinspace}={\thinspace}2{\textperiodcentered}10-15 {\textpm} 1 s as well as its broadening factor β\beta{\thinspace}={\thinspace}1.1. Experiments on different alloys and the dependence of the relaxation strength on the amount of Mo attribute this relaxation to the stress-induced reorientation of Mo-Mo dipoles due to the short distance diffusion of one Mo atom by exchange with a vacancy. Then, it is concluded that Mo is the atomic species responsible for the high-temperature PLC effect in 718 superallo

    Experimental analysis of a single cell flowing electrolyte-direct methanol fuel cell

    No full text
    A single cell flowing electrolyte - direct methanol fuel cell (FE-DMFC) was studied experimentally. Nafion® NRE-212 was used in the membrane electrode assembly (MEA). The flowing electrolyte channel was formed by a polyethylene porous material. The active area of the fuel cell was approximately 25 cm 2. Effects of varying flowing electrolyte conditions (channel thickness, sulfuric acid concentration, channel pressure), methanol concentration, and fuel cell temperature on the overall performance of the cell were studied. It was observed that stopping the flowing electrolyte caused a reduction in the open circuit voltage as well as the current of the cell, indicating that the methanol crossover affected the cell performance. Also, it is presented that a thicker flowing electrolyte channel results in lower power density, and sulfuric acid concentration of 2 molar (18%) was found to be the most advantageous. Raising operating temperature resulted in much better performance of the cell. Increasing flowing electrolyte pressure slightly decreased the performance
    corecore