211 research outputs found
The Importance of PRI Therapy for the Pastoral Counsellor
It is not always easy for pastoral counsellors to help people change. Often people have become stuck in their ways. Recent developments in the field of brain research help explain why change is difficult. This article discusses Past Reality Integration Therapy (PRI), a psychotherapeutic method that integrates recent findings of brain research and offers an important addition to the work of (pastoral) counsellors and psychotherapists. The use of this approach with Dutch students in their pastoral training is presented. Furthermore the importance of this new method for counsellors themselves, their clients and their work is discussed and some overall conclusions about the method and its practical application are presented
Recommended from our members
AGL StimSelect: Software for automated selection of stimuli for artificial grammar learning
Artificial Grammar Learning (AGL) is an experimental paradigm that has been used extensively in cognitive research for many years to study implicit learning, associative learning, and generalization based either on similarity or rules. Without computer assistance it is virtually impossible to generate appropriate grammatical training stimuli along with grammatical or non-grammatical test stimuli that control relevant psychological variables. We present the first flexible, fully automated software for selecting AGL stimuli. The software allows users to specify a grammar of interest, and to manipulate characteristics of training and test sequences, and their relationship to each other. The user thus has direct control over stimulus features that may influence learning and generalization in AGL tasks. The software enables researchers to develop AGL designs that would not be feasible without automatic stimulus selection. It is implemented in Matlab
Psychiatric services in primary care settings: a survey of general practitioners in Thailand
BACKGROUND: General Practitioners (GPs) in Thailand play an important role in treating psychiatric disorders since there is a shortage of psychiatrists in the country. Our aim was to examine GP's perception of psychiatric problems, drug treatment and service problems encountered in primary care settings. METHODS: We distributed 1,193 postal questionnaires inquiring about psychiatric practices and service problems to doctors in primary care settings throughout Thailand. RESULTS: Four hundred and thirty-four questionnaires (36.4%) were returned. Sixty-seven of the respondents (15.4%) who had taken further special training in various fields were excluded from the analysis, giving a total of 367 GPs in this study. Fifty-six per cent of respondents were males and they had worked for 4.6 years on average (median = 3 years). 65.6% (SD = 19.3) of the total patients examined had physical problems, 10.7% (SD = 7.9) had psychiatric problems and 23.9% (SD = 16.0) had both problems. The most common psychiatric diagnoses were anxiety disorders (37.5%), alcohol and drugs abuse (28.1%), and depressive disorders (29.2%). Commonly prescribed psychotropic drugs were anxiolytics and antidepressants. The psychotropic drugs most frequently prescribed were diazepam among anti-anxiety drugs, amitriptyline among antidepressant drugs, and haloperidol among antipsychotic drugs. CONCLUSION: Most drugs available through primary care were the same as what existed 3 decades ago. There should be adequate supply of new and appropriate psychotropic drugs in primary care. Case-finding instruments for common mental disorders might be helpful for GPs whose quality of practice was limited by large numbers of patients. However, the service delivery system should be modified in order to maintain successful care for a large number of psychiatric patients
Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making
<div><p>Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making.</p></div
Unraveling the Shift to the Entrepreneurial Economy
A recent literature has emerged providing compelling evidence that a major shift in the organization of the developed economies has been taking place: away from what has been characterized as the managed economy towards the entrepreneurial economy. In particular, the empirical evidence provides consistent support that (1) the role of entrepreneurship has significantly increased, and (2) a positive relationship exists between entrepreneurial activity and economic performance. However, the factors underlying this observed shift have not been identified in a systematic manner. The purpose of this paper is to suggest some of the factors leading to this shift and implications for public policy. In particular, we find that a fundamental catalyst underlying the shift from the managed to the entrepreneurial economy involved the role of technological change. However, we also find that it was not just technological change but rather involved a number of supporting factors, ranging from the demise of the communist system, increased globalization, new competition for multinational firms and higher levels of prosperity. Recognition of the causes of the shift from the managed to the entrepreneurial economy suggests a rethinking of the public policy approach. Rather than the focus of directly and exclusively on promoting startups and SMEs, it may be that the current approach to entrepreneurship policy is misguided. The priority should not be on entrepreneurship policy but rather a more pervasive and encompassing approach, policy consistent with an entrepreneurial economy
Dopamine Modulates Persistent Synaptic Activity and Enhances the Signal-to-Noise Ratio in the Prefrontal Cortex
The importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA) neurons.We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (≥1 µM) concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs) evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 µM) had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1–1 µM) of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA's effects in an active network.Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning
- …