302 research outputs found

    Venus Express radio occultation observed by PRIDE

    Get PDF
    Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Earth. This technique is usually employed by the deep space tracking and communication facilities (e.g., NASA's Deep Space Network (DSN), ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique for radio occultation experiments, using radio telescopes equipped with Very Long Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE technique for this particular application. We explain in detail the data processing pipeline of radio occultation experiments with PRIDE, based on the collection of so-called open-loop Doppler data with VLBI stations, and perform an error propagation analysis of the technique. Results. With the VEX test case and the corresponding error analysis, we have demonstrated that the PRIDE setup and processing pipeline is suited for radio occultation experiments of planetary bodies. The noise budget of the open-loop Doppler data collected with PRIDE indicated that the uncertainties in the derived density and temperature profiles remain within the range of uncertainties reported in previous Venus' studies. Open-loop Doppler data can probe deeper layers of thick atmospheres, such as that of Venus, when compared to closed-loop Doppler data. Furthermore, PRIDE through the VLBI networks around the world, provides a wide coverage and range of large antenna dishes, that can be used for this type of experiments

    Aldose reductase gene is associated with diabetic macroangiopathy in Japanese Type 2 diabetic patients

    Get PDF
    AIMS: The aldose reductase (AR) gene, a rate-limiting enzyme of the polyol pathway, has been investigated as a candidate gene in determining susceptibility to diabetic microangiopathy. However, the association of the AR gene with diabetic macroangiopathy has not been investigated. Therefore, the present study was conducted to determine whether genetic variations of AR may determine susceptibility to diabetic macroangiopathy. METHODS: There were 378 Type 2 diabetic patients enrolled in this study. A single nucleotide polymorphism in the promoter region (C-106T) was genotyped and the AR protein content of erythrocytes measured by ELISA. RESULTS: There were no significant differences in genotypic or allelic distribution in patients with or without ischaemic heart diseases, but there was a significant increase in the frequency of the CT + TT genotype and T allele in patients with stroke (P = 0.019 and P = 0.012). The erythrocyte AR protein content was increased in patients with the CT and TT genotype compared with those with the CC genotype. After adjustment for age, duration of diabetes, body mass index, systolic blood pressure, HbA(1c), and serum creatinine, triglycerides, and total cholesterol in multivariate logistic-regression models, the association between this AR genotype and stroke remained significant. CONCLUSIONS: Our results suggest that the CT or TT genotype of the AR gene might be a genetic marker of susceptibility to stroke in Type 2 diabetic patients. This observation might contribute to the development of strategies for the prevention of stroke in Type 2 diabetic patients

    Failure of SOX9 Regulation in 46XY Disorders of Sex Development with SRY, SOX9 and SF1 Mutations

    Get PDF
    In human embryogenesis, loss of SRY (sex determining region on Y), SOX9 (SRY-related HMG box 9) or SF1 (steroidogenic factor 1) function causes disorders of sex development (DSD). A defining event of vertebrate sex determination is male-specific upregulation and maintenance of SOX9 expression in gonadal pre-Sertoli cells, which is preceded by transient SRY expression in mammals. In mice, Sox9 regulation is under the transcriptional control of SRY, SF1 and SOX9 via a conserved testis-specific enhancer of Sox9 (TES). Regulation of SOX9 in human sex determination is however poorly understood.We show that a human embryonal carcinoma cell line (NT2/D1) can model events in presumptive Sertoli cells that initiate human sex determination. SRY associates with transcriptionally active chromatin in NT2/D1 cells and over-expression increases endogenous SOX9 expression. SRY and SF1 co-operate to activate the human SOX9 homologous TES (hTES), a process dependent on phosphorylated SF1. SOX9 also activates hTES, augmented by SF1, suggesting a mechanism for maintenance of SOX9 expression by auto-regulation. Analysis of mutant SRY, SF1 and SOX9 proteins encoded by thirteen separate 46,XY DSD gonadal dysgenesis individuals reveals a reduced ability to activate hTES.We demonstrate how three human sex-determining factors are likely to function during gonadal development around SOX9 as a hub gene, with different genetic causes of 46,XY DSD due a common failure to upregulate SOX9 transcription

    Identification of SOX3 as an XX male sex reversal gene in mice and humans

    Get PDF
    Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome-linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box-containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad.Edwina Sutton, James Hughes... Nicholas Rogers... Dale McAninch... Paul Thomas, et al

    A Novel Mouse Fgfr2 Mutant, Hobbyhorse (hob), Exhibits Complete XY Gonadal Sex Reversal

    Get PDF
    The secreted molecule fibroblast growth factor 9 (FGF9) plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob), which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser) in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6) genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected

    Factors that Impact Susceptibility to Fiber-Induced Health Effects

    Get PDF
    Asbestos and related fibers are associated with a number of adverse health effects, including malignant mesothelioma (MM), an aggressive cancer that generally develops in the surface serosal cells of the pleural, pericardial, and peritoneal cavities. Although approximately 80% of individuals with MM are exposed to asbestos, fewer than 5% of asbestos workers develop MM. In addition to asbestos, other mineralogical, environmental, genetic, and possibly viral factors might contribute to MM susceptibility. Given this complex etiology of MM, understanding susceptibility to MM needs to be a priority for investigators in order to reduce exposure of those most at risk to known environmental carcinogens. In this review, the current body of literature related to fiber-associated disease susceptibility including age, sex, nutrition, genetics, asbestos, and other mineral exposure is addressed with a focus on MM, and critical areas for further study are recommended

    Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    Get PDF
    The boygirl (byg) mouse mutant reveals that MAP3K4-mediated signaling is necessary for normal SRY expression and testis specification in the developing mouse gonad
    corecore