321 research outputs found

    Assessing statistical significance of periodogram peaks

    Full text link
    The least-squares (or Lomb-Scargle) periodogram is a powerful tool which is used routinely in many branches of astronomy to search for periodicities in observational data. The problem of assessing statistical significance of candidate periodicities for different periodograms is considered. Based on results in extreme value theory, improved analytic estimations of false alarm probabilities are given. They include an upper limit to the false alarm probability (or a lower limit to the significance). These estimations are tested numerically in order to establish regions of their practical applicability.Comment: 7 pages, 6 figures, 1 table; To be published in MNRA

    On the orbital period of the cataclysmic variable RZ Leonis

    Get PDF
    In this research note we present a time-resolved study of the Balmer emission lines of RZ Leo. From the analysis of the radial velocities we find an orbital period of 0.07651(26) d. This is in excellent agreement with the photometrically determined periods in quiescence and during the early stages of superoutburst. A comparison of the recently determined superhump period gives an excess of ~0.03, which is a typical value for an SU UMa star of this period.Comment: 3 pages, 6 figures, A&A, accepte

    Optimal placement of a limited number of observations for period searches

    Get PDF
    Robotic telescopes present the opportunity for the sparse temporal placement of observations when period searching. We address the best way to place a limited number of observations to cover the dynamic range of frequencies required by an observer. We show that an observation distribution geometrically spaced in time can minimise aliasing effects arising from sparse sampling, substantially improving signal detection quality. The base of the geometric series is however a critical factor in the overall success of this strategy. Further, we show that for such an optimal distribution observations may be reordered, as long as the distribution of spacings is preserved, with almost no loss of quality. This implies that optimal observing strategies can retain significant flexibility in the face of scheduling constraints, by providing scope for on-the-fly adaptation. Finally, we present optimal geometric samplings for a wide range of common observing scenarios, with an emphasis on practical application by the observer at the telescope. Such a sampling represents the best practical empirical solution to the undersampling problem that we are aware of. The technique has applications to robotic telescope and satellite observing strategies, where target acquisition overheads mean that a greater total target exposure time (and hence signal-to-noise) can often in practice be achieved by limiting the number of observations.Comment: 8 pages with 16 figure

    Photometry Results for the Globular Clusters M10 and M12: Extinction Maps, Color-Magnitude Diagrams, and Variable Star Candidates

    Full text link
    We report on photometry results of the equatorial globular clusters (GCs) M10 and M12. These two clusters are part of our sample of GCs which we are probing for the existence of photometrically varying eclipsing binary stars. During the search for binaries in M10 and M12, we discovered the signature of differential reddening across the fields of the clusters. The effect is stronger for M10 than for M12. Using our previously described dereddening technique, we create differential extinction maps for the clusters which dramatically improve the appearance of the color-magnitude diagrams (CMDs). Comparison of our maps with the dust emissivity maps of Schlegel, Finkbeiner, & Davis (SFD) shows good agreement in terms of spatial extinction features. Several methods of adding an E_{V-I} zero point to our differential maps are presented of which isochrone fitting proved to be the most successful. Our E_{V-I} values fall within the range of widely varying literature values. More specifically, our reddening zero point estimate for M12 agrees well with the SFD estimate, whereas the one for M10 falls below the SFD value. Our search for variable stars in the clusters produced a total of five variables: three in M10 and two in M12. The M10 variables include a binary system of the W Ursa Majoris (W UMa) type, a background RR Lyrae star, and an SX Phoenicis pulsator, none of which is physically associated with M10. M12's variables are two W UMa binaries, one of which is most likely a member of the cluster. We present the phased photometry lightcurves for the variable stars, estimate their distances, and show their locations in the fields and the CMDs of the GCs.Comment: 22 pages, 21 figures, to be published in AJ October 2002. For a higher-resolution version of this paper, please visit http://www.astro.lsa.umich.edu/~kaspar/M10_M12_photometry.ps.gz (gzipped postscript) or http://www.astro.lsa.umich.edu/~kaspar/M10_M12_photometry.pdf (pdf file

    Low Luminosity States of the Black Hole Candidate GX~339--4. II. Timing Analysis

    Full text link
    Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer (RXTE) observations of the black hole candidate GX 339-4 that were taken during its hard/low state. On long time scales, the RXTE All Sky Monitor data reveal evidence of a 240 day periodicity, comparable to timescales expected from warped, precessing accretion disks. On short timescales all observations save one show evidence of a persistent f approximately equal to 0.3 Hz QPO. The broad band (10^{-3}-10^2 Hz) power appears to be dominated by two independent processes that can be modeled as very broad Lorentzians with Q approximately less than 1. The coherence function between soft and hard photon variability shows that if these are truly independent processes, then they are individually coherent, but they are incoherent with one another. This is evidenced by the fact that the coherence function between the hard and soft variability is near unity between 0.005-10 Hz but shows evidence of a dip at f approximately equal to 1 Hz. This is the region of overlap between the broad Lorentzian fits to the PSD. Similar to Cyg X-1, the coherence also drops dramatically at frequencies approximately greater than 10 Hz. Also similar to Cyg X-1, the hard photon variability is seen to lag the soft photon variability with the lag time increasing with decreasing Fourier frequency. The magnitude of this time lag appears to be positively correlated with the flux of GX 339-4. We discuss all of these observations in light of current theoretical models of both black hole spectra and temporal variability.Comment: To Appear in the AStrophysical Journa

    Long-Term X-ray Variability in GX 354-0

    Get PDF
    We report for the first time the detection of long-term X-ray variability in the bright bulge source GX 354-0 (=4U 1728-34) observed with the All Sky Monitor (ASM) on board the Rossi X-Ray Timing Explorer (RXTE). The 2-year RXTE ASM database reveals significant power at ~72 days. Similar behaviour was seen in the 6-year Ariel 5 ASM database, but at a period of ~63 days. The timescales and light curves resemble the ~78 days modulation seen in Cyg X-2 and we therefore interpret this modulation in GX 354-0 as a super-orbital effect.Comment: 9 pages, 3 figures, accepted for publication in New Astronom

    The Araucaria Project. Bright Variable Stars in NGC 6822 from a Wide-Field Imaging Survey

    Full text link
    We have performed a search for variable stars in the dwarf irregular galaxy NGC 6822 using wide-field multi-epoch VI photometry down to a limiting magnitude VV \sim 22. Apart from the Cepheid variables in this galaxy already reported in an earlier paper by Pietrzynski et al. (2004), we have found 1019 "non-periodic" variable stars, 50 periodically variable stars with periods ranging from 0.12 to 66 days and 146 probably periodic variables. Twelve of these stars are eclipsing binaries and fifteen are likely new, low-amplitude Cepheids. Interestingly, seven of these Cepheid candidates have periods longer than 100 days, have very low amplitudes (less than 0.2 mag in II), and are very red. They could be young, massive Cepheids still embedded in dusty envelopes. The other objects span a huge range in colours and represent a mixture of different types of luminous variables. Many of the variables classified as non-periodic in the present study may turn out to be {\it periodic} variables once a much longer time baseline will be available to study them. We provide the catalogue of photometric parameters and show the atlas of light curves for the new variable stars. Our present catalogue is complementary to the one of Baldacci et al. (2005) which has focussed on very short-period and fainter variables in a subfield in NGC 6822.Comment: Accepted for publication in A&

    Solutions for 10,000 Eclipsing Binaries in the Bulge Fields of OGLE II Using DEBiL

    Full text link
    We have developed a fully-automated pipeline for systematically identifying and analyzing eclipsing binaries within large datasets of light curves. The pipeline is made up of multiple tiers which subject the light curves to increasing levels of scrutiny. After each tier, light curves that did not conform to a given criteria were filtered out of the pipeline, reducing the load on the following, more computationally intensive tiers. As a central component of the pipeline, we created the fully automated Detached Eclipsing Binary Light curve fitter (DEBiL), which rapidly fits large numbers of light curves to a simple model. Using the results of DEBiL, light curves of interest can be flagged for follow-up analysis. As a test case, we analyzed the 218699 light curves within the bulge fields of the OGLE II survey and produced 10862 model fits. We point out a small number of extreme examples as well as unexpected structure found in several of the population distributions. We expect this approach to become increasingly important as light curve datasets continue growing in both size and number.Comment: Accepted for publication in ApJ, 36 pages, 15 figures, 5 tables. See http://cfa-www.harvard.edu/~jdevor/DEBiL.html for high-resolution figures and further informatio

    Time Series Photometry of Variable Stars in the Globular Cluster NGC 6397

    Get PDF
    Time series BVI photometry is presented for 16 short-period variables located in the central region of the globular cluster NGC 6397. The sample includes 9 newly detected variables. The light curve of cataclysmic variable CV6 shows variability with a period of 0.2356 days. We confirm an earlier reported period of 0.472 days for cataclysmic variable CV1. Phased light curves of both CVs exhibit sine-like light curves, with two minima occurring during each orbital cycle. The secondary component of CV1 has a low average density of 0.83 g/cm^{3} indicating that it cannot be a normal main sequence star. Variables among the cluster blue stragglers include a likely detached eclipsing binary with orbital period of 0.787 days, three new SX Phe stars (one of which has the extremely short period of 0.0215 days), and three low amplitude variables which are possible gamma Doradus variables.Comment: 28 pages, 13 figure

    Discovery of a bright eclipsing cataclysmic variable

    Get PDF
    We report on the discovery of J0644+3344, a bright deeply eclipsing cataclysmic variable (CV) binary. Spectral signatures of both binary components and an accretion disk can be seen at optical wavelengths. The optical spectrum shows broad H I, He I, and He II accretion disk emission lines with deep narrow absorption components from H I, He I, Mg II and Ca II. The absorption lines are seen throughout the orbital period, disappearing only during primary eclipse. These absorption lines are either the the result of an optically-thick inner accretion disk or from the photosphere of the primary star. Radial velocity measurements show that the H I, He I, and Mg II absorption lines phase with the the primary star, while weak absorption features in the continuum phase with the secondary star. Radial velocity solutions give a 150+/-4 km/s semi-amplitude for the primary star and 192.8+/-5.6 km/s for the secondary. The individual stellar masses are 0.63-0.69 Mdot for the primary and 0.49-0.54 Mdot for the secondary. The bright eclipsing nature of this binary has helped provide masses for both components with an accuracy rarely achieved for CVs. This binary most closely resembles a nova-like UX UMa or SW Sex type of CV. J0644+3344, however, has a longer orbital period than most UX UMa or SW Sex stars. Assuming an evolution toward shorter orbital periods, J0644+3344 is therefore likely to be a young interacting binary. The secondary star is consistent with the size and spectral type of a K8 star, but has an M0 mass.Comment: 10 pages, 13 figure, accepted for publication in A&
    corecore