960 research outputs found

    Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds.

    Get PDF
    Recycled plastics are low-value commodities due to residual impurities and the degradation of polymer properties with each cycle of re-use. Plastics that undergo reversible polymerization allow high-value monomers to be recovered and re-manufactured into pristine materials, which should incentivize recycling in closed-loop life cycles. However, monomer recovery is often costly, incompatible with complex mixtures and energy-intensive. Here, we show that next-generation plastics-polymerized using dynamic covalent diketoenamine bonds-allow the recovery of monomers from common additives, even in mixed waste streams. Poly(diketoenamine)s 'click' together from a wide variety of triketones and aromatic or aliphatic amines, yielding only water as a by-product. Recovered monomers can be re-manufactured into the same polymer formulation, without loss of performance, as well as other polymer formulations with differentiated properties. The ease with which poly(diketoenamine)s can be manufactured, used, recycled and re-used-without losing value-points to new directions in designing sustainable polymers with minimal environmental impact

    EMPLOYER\u27S LIABILITY AND ERRORS AND OMISSIONS INSURANCE COVERAGE FOR EMPLOYMENT-RELATED CLAIMS

    Get PDF

    A New Method For Regulatory Antitrust Analysis? Verizon Communications Inc. v. Trinko

    Get PDF
    It is a commonplace to speak of the application of law to facts. Application is a practical art, and thus involves method. Curiously, there is a paucity of discussion of the various methods by which substantive legal standards are applied to facts. This omission is significant. Method is not outcome-determinative in all cases, but, at a minimum, it guides analysis, opening certain possibilities and foreclosing others

    An improved ontological representation of dendritic cells as a paradigm for all cell types

    Get PDF
    The Cell Ontology (CL) is designed to provide a standardized representation of cell types for data annotation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL’s utility for cross-species data integration. To address this problem, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. 104. Barry Smith, “Toward a Realistic Science of Environments”, Ecological Psychology, 2009, 21 (2), April-June, 121-130. Abstract: The perceptual psychologist J. J. Gibson embraces a radically externalistic view of mind and action. We have, for Gibson, not a Cartesian mind or soul, with its interior theater of contents and the consequent problem of explaining how this mind or soul and its psychological environment can succeed in grasping physical objects external to itself. Rather, we have a perceiving, acting organism, whose perceptions and actions are always already tuned to the parts and moments, the things and surfaces, of its external environment. We describe how on this basis Gibson sought to develop a realist science of environments which will be ‘consistent with physics, mechanics, optics, acoustics, and chemistry’

    Raças fisiológicas e linhagens de uma população contemporânea de Magnaporthe oryzae associada à brusone do arroz irrigado no Sul do Brasil.

    Get PDF
    Objetivou-se identificar raças fisiológicas, com base em séries diferenciadoras, e linhagens, com base em marcadores microssatélites, em uma população de Magnaporthe oryzae do sul do Brasil

    Barium isotopes in mid-ocean ridge hydrothermal vent fluids : a source of isotopically heavy Ba to the ocean

    Get PDF
    Funding: These field and related experimental studies were supported through US NSF grants: 0549547, 0751771, 0813861, 0961188 and 1736679 (WES).Mid-ocean ridge (MOR) hydrothermal vent fluids are enriched with dissolved barium, but due to barite (BaSO4) precipitation during mixing between Ba-bearing vent fluids and SO4-bearing seawater, the magnitude of hydrothermal Ba input to the ocean remains uncertain. Deep-ocean Ba isotopes show evidence for non-conservative behavior, which might be explained by input of isotopically heavy hydrothermal Ba. In this study we present the first Ba isotope data in mid-ocean ridge hydrothermal vent fluids and particles from systems on the Mid-Atlantic Ridge (Rainbow 36°N and TAG 26°N), the East Pacific Rise (EPR9–10°N and 13°N) and the Juan de Fuca Ridge (MEF and ASHES). The vent fluids display a wide range of dissolved Ba concentrations from 0.43 to 97.9 μmol/kg and δ138/134Ba values from −0.26 to +0.91‰, but are modified relative to initial composition due to precipitation of barite. Calculated endmember vent fluid δ138/134Ba values, prior to barite precipitation, are between −0.17 and +0.09‰, consistent with the values observed in oceanic basalts and pelagic sediments. Water-rock interaction at depth in the oceanic crust appears to occur without Ba isotope fractionation. During subsequent venting and mixing with seawater, barite precipitation preferentially removes isotopically light Ba from vent fluids with a fractionation factor of Δ138/134Bahyd-barite-fluid = −0.35 ± 0.10‰ (2SE, n = 2). Based on knowledge of barite saturation and isotope fractionation during precipitation, the effective hydrothermal Ba component that mixes with seawater after barite precipitation has completed can be calculated: δ138/134Bahyd = +1.7 ± 0.7‰ (2SD). This value is isotopically heavier than deep ocean waters and may explain the observed non-conservative of Ba isotopes in deep waters. These new constraints on hydrothermal Ba compositions enable the hydrothermal input of Ba to Atlantic deep waters to be assessed at ≈3–9% of the observed Ba. Barium isotopes might be used as a tracer to reconstruct the history of hydrothermal Ba inputs and seawater SO4 concentrations in the past.PostprintPeer reviewe

    Isolating the photovoltaic junction: atomic layer deposited TiO2-RuO2 alloy Schottky contacts for silicon photoanodes

    Get PDF
    We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer

    Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4

    Full text link
    We have performed an experimental study of the crystal structure, lattice-dynamics, and optical properties of PbCrO4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band-gap have been accurately determined. X-ray-diffraction, Raman, and optical-absorption experiments have allowed us also to completely characterize two pressure-induced structural phase transitions. The first transition is isostructural, maintaining the monoclinic symmetry of the crystal, and having important consequences in the physical properties; among other a band-gap collapse is induced. The second one involves an increase of the symmetry of the crystal, a volume collapse, and probably the metallization of PbCrO4. The results are discussed in comparison with related compounds and the effects of pressure in the electronic structure explained. Finally, the room-temperature equation of state of the low-pressure phases is also obtained.Comment: 32 pages, 9 figures, 3 table
    corecore