72 research outputs found

    Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle".</p> <p>Results</p> <p>Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, <it>Aceros waldeni </it>and <it>Penelopides panini</it>. The mt genomes are characterized by a tandemly duplicated region encompassing part of <it>cytochrome b</it>, 3 tRNAs, <it>NADH6</it>, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (<it>A. waldeni</it>) and 22,737 bp (<it>P. panini</it>), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation.</p> <p>Conclusions</p> <p>The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes.</p

    Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    Get PDF
    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today

    The fatty acid synthase gene is a conserved p53 family target from worm to human.

    No full text
    The discovery that the p53 family consists of three members (p53, p63 and p73) in vertebrates and of a single homolog in invertebrates has raised the challenge of understanding the functions of the ancestor and how they have evolved and differentiated within the duplicated genes in vertebrates. Here, we report that the fatty acid synthase (FAS) gene, encoding for a key enzyme involved in the biogenesis of membrane lipids in rapidly proliferating cells, is a conserved target of the p53 family throughout the evolution. We show that CEP-1, the C. elegans p53 homolog, is able to bind the two p53 family responsive elements (REs) identified in the worm fasn-1 gene. Moreover, we demonstrate that fasn-1 expression is modulated by CEP-1 in vivo, by comparing wild-type and CEP-1 knockout worms. In human, luciferase and chromatin immunoprecipitation assays demonstrate that TAp73alpha and DeltaNp63alpha, but not p53, TAp73beta and TAp63alpha bind the two p53 REs of the human FASN gene. We show that the ectopic expression of TAp73alpha and DeltaNp63alpha leads to an increase of FASN mRNA levels, while their silencing produces a decrease of FASN expression. Furthermore, we present data showing a correlation between DeltaNp63alpha and FASN expression in cellular proliferation. Of relevant importance is that fasn-1 is the first CEP-1 direct target gene identified so far in C. elegans and our results suggest a new CEP-1 role in cellular proliferation and development, besides the one already described in apoptosis of germ cells. These data confirm the hypothesis that the ancestral functions of the single invertebrate gene may have been spread out among the three vertebrate members, each of them have acquired specific role in cell cycle regulation
    corecore