1,407 research outputs found

    Magnetic and transport properties of the spin-state disordered oxide La0.8Sr0.2Co_{1-x}Rh_xO_{3-\delta}

    Get PDF
    We report measurements and analysis of magnetization, resistivity and thermopower of polycrystalline samples of the perovskite-type Co/Rh oxide La0.8_{0.8}Sr0.2_{0.2}Co1x_{1-x}Rhx_xO3δ_{3-\delta}. This system constitutes a solid solution for a full range of xx,in which the crystal structure changes from rhombohedral to orthorhombic symmetry with increasing Rh content xx. The magnetization data reveal that the magnetic ground state immediately changes upon Rh substitution from ferromagnetic to paramagnetic with increasing xx near 0.25, which is close to the structural phase boundary. We find that one substituted Rh ion diminishes the saturation moment by 9 μB\mu_B, which implies that one Rh3+^{3+} ion makes a few magnetic Co3+^{3+} ions nonmagnetic (the low spin state), and causes disorder in the spin state and the highest occupied orbital. In this disordered composition (0.05x0.750.05\le x \le 0.75), we find that the thermopower is anomalously enhanced below 50 K. In particular, the thermopower of xx=0.5 is larger by a factor of 10 than those of xx=0 and 1, and the temperature coefficient reaches 4 μ\muV/K2^2 which is as large as that of heavy-fermion materials such as CeRu2_2Si2_2.Comment: 8 pages, 6 figures, accepted to Phys. Rev.

    Multivalued memory effects in electronic phase-change manganites controlled by Joule heating

    Full text link
    Non-volatile multivalued memory effects caused by magnetic fields, currents, and voltage pulses are studied in Nd_{0.65}Ca_{0.35}MnO_3 and (Nd_{1-y}Sm_{y})_{0.5}Sr_{0.5}MnO_3 (y=0.75) single crystals in the hysteretic region between ferromagnetic metallic and charge-ordered insulating states. The current/voltage effects observed in this study are explained by the self-heating effect, which enable us to control the colossal electroresistance effects. This thermal-cycle induced switching between electronic solid and liquid states can be regarded as electronic version of atomic crystal/amorphous transitions in phase-change chalcogenides.Comment: 5 pages, 4 figures. to appear in Phys. Rev.

    Crystallographic and superconducting properties of the fully-gapped noncentrosymmetric 5d-electron superconductors CaMSi3 (M=Ir, Pt)

    Get PDF
    We report crystallographic, specific heat, transport, and magnetic properties of the recently discovered noncentrosymmetric 5d-electron superconductors CaIrSi3 (Tc = 3.6 K) and CaPtSi3 (Tc = 2.3 K). The specific heat suggests that these superconductors are fully gapped. The upper critical fields are less than 1 T, consistent with limitation by conventional orbital depairing. High, non-Pauli-limited {\mu}0 Hc2 values, often taken as a key signature of novel noncentrosymmetric physics, are not observed in these materials because the high carrier masses required to suppress orbital depairing and reveal the violated Pauli limit are not present.Comment: 8 pages, 8 figure

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Trends in Aridity of the Arid and Semi-Arid Regions of Northern Nigeria

    Get PDF
    Aridity index (AI) is a numerical indicator of the degree of dryness of the climate at a given location. These indicators serve to identify and delimit regions that suffer from a deficit of available water, a condition that can severely affect the effective use of agricultural land and water resources development. The focus of this paper is to determine the trend and map out the aridity of the drought prone areas of northern Nigeria. Three decade’s (1981–2010) annual rainfall and, minimum and maximum temperature records for 11 synoptic meteorological stations were collected from NIMET Office, Lagos and used. De Martonne’s aridity index formula was applied to the data and aridity indices were derived for the region. The derived aridity indices were subjected to time series analysis and classification of the region into aridity zones was carried out based on the derived aridity indices from which an aridity map of the region was produced. Results of the time series analysis show that only Kaduna indicated a decreasing aridity while the other stations exhibit a significantly positive tendency towards increasing dryness. The region is classified into four aridity zones based on the aridity indices as: slightly humid zone (Kaduna and Zaria areas), moderately arid areas (Yelwa, Gusau, Kano and Bauchi), semi arid regions (Sokoto, Potiskum, Maiduguri) and the arid zone (areas around Nguru, Hadejia and Kano). It is concluded that the drought prone areas of northern Nigeria are witnessing increasing aridity which accounts for the shrinking of most dams and other surface reservouirs in the region. This has necessitated accessing of underground water from even the third aquifer at some locations. It is recommended therefore, that the dredging of all the existing dams in northern Nigeria be undertaken in order to improve the storage of more water, just as proper water policy for its sustainable use be formulated by Nigeria. Keywords: aquifer, aridity, drought, dryness, Indices, time serie

    Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved

    Get PDF
    Red meat and processed meat intake is associated with a risk of colorectal cancer, a major cause of death in affluent countries. Epidemiological and experimental evidence supports the hypothesis that heme iron present in meat promotes colorectal cancer. This meta-analysis of prospective cohort studies of colon cancer reporting heme intake included 566,607 individuals and 4,734 cases of colon cancer. The summary relative risk of colon cancer was 1.18 [95%C.I.: 1.06-1.32] for subjects in the highest category of heme iron intake compared with those in the lowest category. Epidemiological data thus show a suggestive association between dietary heme and risk of colon cancer. The analysis of experimental studies in rats with chemically-induced colon cancer showed that dietary hemoglobin and red meat consistently promote aberrant crypt foci, a putative pre-cancer lesion. The mechanism is not known, but heme iron has a catalytic effect on (i) the endogenous formation of carcinogenic N-nitroso compounds and (ii) the formation of cytotoxic and genotoxic aldehydes by lipoperoxidation. A review of evidence supporting these hypotheses suggests that both pathways are involved in heme iron toxicit

    Deep ALTAIR + NIRI Imaging of the Disk and Bulge of M31

    Full text link
    Deep J, H, and K' images, recorded with the ALTAIR adaptive optics system and NIRI imager on Gemini North, are used to probe the stellar content of the disk and bulge of the Local Group galaxy M31. With FWHM near 0.08 arcsec in K, these are the highest angular resolution near-infrared images yet obtained of this galaxy. Four fields that sample M31 at galactocentric radii of 62, 9, 4, and 2 arcmin were observed. The RGB-tip occurs between K = 17.0 and 17.2, and the color of the RGB in the field closest to the center of M31 is consistent with that of NGC 6528. After accounting for random photometric errors, the upper RGB in each field has a width on the (K, J-K) CMD that is consistent with a +/- 0.5 dex dispersion in [Fe/H], in rough agreement with what is seen in other disk and spheroid fields in M31. A population of very bright red stars, which we identify as C stars, are seen in the three fields that are closest to the center of M31. The spatial distribution of these objects suggests that they are well mixed throughout this part of M31, and so likely did not form in a compact region near the galactic nucleus, but more probably formed in the inner disk. We speculate that these C stars may be the most luminous members of the intermediate age population that has been detected previously in studies of the integrated spectrum of the central regions of M31.Comment: 36 pages of text + 16 eps figures; Astronomical Journal in pres

    Soft capacitor fibers using conductive polymers for electronic textiles

    Full text link
    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes, and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

    Role of LOTR1 in nutrient transport through organization of spatial distribution of root endodermal barriers

    Get PDF
    The formation of Casparian strips and suberin lamellae at the endodermis limits the free diffusion of nutrients and harmful substances via the apoplastic space between the soil solution and the stele in roots [1–3]. Casparian strips are ring-like lignin polymers deposited in the middle of anticlinal cellwalls between endodermal cells and fill the gap between them [4–6]. Suberin lamellae are glycerolipid polymers covering the endodermal cells and likely function as a barrier to limit transmembrane movement of apoplastic solutes into the endodermal cells [7, 8].However, the current knowledge on the formation of these two distinct endodermal barriers and their regulatory role in nutrient transport is still limited. Here, we identify an uncharacterized gene,LOTR1, essential for Casparian strip formation in Arabidopsis thaliana. The lotr1 mutants display altered localization of CASP1, an essential protein for Casparian strip formation [9], disrupted Casparian strips, ectopic suberization of endodermal cells, and low accumulation of shoot calcium (Ca). Degradation by expression of a suberin-degrading enzyme in the mutants revealed that the ectopic suberization at the endodermal cells limits Ca transport through the transmembrane pathway, thereby causing reduced Ca delivery to the shoot. Moreover, analysis of the mutants showed that suberin lamellae function as an apoplastic diffusion barrier to the stele at sites of lateral root emergence where Casparian strips are disrupted. Our findings suggest that the transmembrane pathway through unsuberized endodermal cells, rather than the sites of lateral root emergence,mediates the transport of apoplastic substances such as Ca into the xylem
    corecore