1,191 research outputs found
Study to determine suitable high temperature, high altitude, total temperature sensors Final report
High temperature, high altitude total temperature sensor development - thermocouple devic
Recommended from our members
Natural Variability in Projections of Climate Change Impacts on Fine Particulate Matter Pollution
Variations in meteorology associated with climate change can impact fine particulate matter (PM2.5) pollution by affecting natural emissions, atmospheric chemistry, and pollutant transport. However, substantial discrepancies exist among model-based projections of PM2.5 impacts driven by anthropogenic climate change. Natural variability can significantly contribute to the uncertainty in these estimates. Using a large ensemble of climate and atmospheric chemistry simulations, we evaluate the influence of natural variability on projections of climate change impacts on PM2.5 pollution in the United States. We find that natural variability in simulated PM2.5 can be comparable or larger than reported estimates of anthropogenic-induced climate impacts. Relative to mean concentrations, the variability in projected PM2.5 climate impacts can also exceed that of ozone impacts. Based on our projections, we recommend that analyses aiming to isolate the effect climate change on PM2.5 use 10 years or more of modeling to capture the internal variability in air quality and increase confidence that the anthropogenic-forced effect is differentiated from the noise introduced by natural variability. Projections at a regional scale or under greenhouse gas mitigation scenarios can require additional modeling to attribute impacts to climate change. Adequately considering natural variability can be an important step toward explaining the inconsistencies in estimates of climate-induced impacts on PM2.5. Improved treatment of natural variability through extended modeling lengths or initial condition ensembles can reduce uncertainty in air quality projections and improve assessments of climate policy risks and benefits
Crew Conduct as Unseaworthiness
It seems repugnant to all law that a shipowner should be held liable under the doctrine of unseaworthiness for occurrences which he has no reasonable way of preventing. The shipowner may be best protected by incorporating his knowledge of a crew member\u27s dangerous propensities as an element of proof in assault cases based on unseaworthiness. Should general maritime law continue to offer legal barriers to shipowners, a seaman\u27s workmen\u27s compensation statute or a general re-draft of the Jones Act could enable the shipowner to set up stronger defense in an unseaworthiness action
Pelodera (syn. Rhabditis) strongyloides as a cause of dermatitis – a report of 11 dogs from Finland
BACKGROUND: Pelodera (Rhabditis) strongyloides is a small saprophytic nematode that lives in decaying organic matter. On rare occasions, it can invade the mammalian skin, causing a pruritic, erythematous, alopecic and crusting dermatitis on skin sites that come into contact with the ground. Diagnosis of the disease is based on case history (a dog living outdoors on damp straw bedding) with characteristic skin lesions and on the demonstration of typical larvae in skin scrapings or biopsy. Pelodera (rhabditic) dermatitis cases have been reported mainly from Central European countries and the United States. CASE PRESENTATION: During 1975–1999, we verified 11 canine cases of Pelodera dermatitis in Finland. The cases were confirmed by identifying Pelodera larvae in scrapings. Biopsies for histopathology were obtained from three cases, and typical histopathological lesions (epidermal hyperplasia, epidermal and follicular hyperkeratosis, folliculitis and furunculosis with large numbers of nematode larvae of 25–40 μm of diameter within hair follicles) were present. The Pelodera strongyloides dermatitica strain from the first verified case in Finland has been maintained in ordinary blood agar in our laboratory since 1975. Light microscopy (LM) and scanning electron microscopy (SEM) studies were employed to obtain detailed morphological information about the causative agent. The rhabditiform oesophagus at all developmental stages, the morphology of the anterior end of the nematode, copulatory bursa and spicules of the male and the tail of the female were the most important morphological features for identifying P. strongyloides. CONCLUSION: These cases show that Pelodera dermatitis occurs in Finland, and also farther north than described earlier in the literature. This condition should be considered when a dog living outdoors has typical skin lesions situated at sites in contact with the ground as the main presenting clinical feature. The fastest and easiest way to confirm the diagnosis is to demonstrate typical larvae in skin scrapings. In uncertain cases, skin biopsy and culturing of the worms are recommended as supplementary diagnostic procedures
Symmetry of Nonparametric Statistical Tests on Three Samples
Problem statement: Many different nonparametric statistical procedures can be used to analyze ranked data. Inconsistencies among the outcomes of such procedures can occur when analyzing the same ranked data set. Understanding why these peculiarities can occur is imperative to providing an accurate analysis of the ranking data. In this context, this study addressed why inconsistent outcomes can occur and which types of data structures cause the different procedures to yield different outcomes. Approach: Appropriate properties were identified and developed to explain why different methods can define different rankings of three samples with the same data. The approach identifies certain symmetry structures that are implicitly contained within the data and analyzes how the procedures utilize these structures to produce an outcome. Results: We proved that all possible differences among the nonparametric rules are caused because different rules place different levels of emphasis on the specified symmetry configurations of data. Our findings explain and characterize why different procedures can output different results using the same data set. Conclusion: This study therefore served as crucial step in deciding which nonparametric procedure to use when analyzing ranked data. In addition, it serves as the building block to defining new techniques to analyze rankings. Because different procedures use different aspects of the data in different ways, then one may determine the choice of analysis procedure based on what parts of the data one deems important
Saari's homographic conjecture for planar equal-mass three-body problem in Newton gravity
Saari's homographic conjecture in N-body problem under the Newton gravity is
the following; configurational measure \mu=\sqrt{I}U, which is the product of
square root of the moment of inertia I=(\sum m_k)^{-1}\sum m_i m_j r_{ij}^2 and
the potential function U=\sum m_i m_j/r_{ij}, is constant if and only if the
motion is homographic. Where m_k represents mass of body k and r_{ij}
represents distance between bodies i and j. We prove this conjecture for planar
equal-mass three-body problem.
In this work, we use three sets of shape variables. In the first step, we use
\zeta=3q_3/(2(q_2-q_1)) where q_k \in \mathbb{C} represents position of body k.
Using r_1=r_{23}/r_{12} and r_2=r_{31}/r_{12} in intermediate step, we finally
use \mu itself and \rho=I^{3/2}/(r_{12}r_{23}r_{31}). The shape variables \mu
and \rho make our proof simple
Altitude Investigation of Performance of Turbine-propeller Engine and Its Components
An investigation was conducted on a turbine-propeller engine in the NACA Lewis altitude wind tunnel at altitudes from 5000 to 35,000 feet. The applicability of generalized parameters to turbine-propeller engine data, analyses of the compressor, the combustion chambers, and the turbine, and a study of the over-all engine performance are reported. Engine performance data obtained at sea-level static conditions could be used to predict static performance at altitudes up to 35,000 feet by use of the standard generalized parameters
- …