60 research outputs found

    Extracorporeal Chloride Removal by Electrodialysis (CRe-ED): A Novel Approach to Correct Acidemia

    Get PDF
    RATIONALE: Acidemia is a severe condition among critically ill patients. Despite lack of evidence, sodium bicarbonate is frequently used to correct pH. However, its administration is burdened by several side effects. We hypothesized that the reduction of plasma chloride concentration could be an alternative strategy to correct acidemia. OBJECTIVES: To evaluate feasibility, safety, and effectiveness of a novel strategy to correct acidemia through Extracorporeal Chloride Removal by Electrodialysis (CRe-ED). METHODS: Ten swine (6 treatments, 4 controls) were sedated, mechanically ventilated and connected to an electrodialysis extracorporeal device capable of removing selectively chloride. In random order, an arterial pH of 7.15 was induced either through reduction of ventilation (respiratory acidosis) or through lactic acid infusion (metabolic acidosis). Acidosis was subsequently sustained for 12-14 hours. In treatment pigs, soon after reaching target acidemia, electrodialysis was started in order to restore pH. MEASUREMENTS AND MAIN RESULTS: During respiratory acidosis, electrodialysis reduced plasma chloride concentration by 26\ub15 mEq/L within 6 hours (final pH=7.36\ub10.04). Control animals exhibited incomplete and slower compensatory response to respiratory acidosis (final pH=7.29\ub10.03, p<0.001). During metabolic acidosis, electrodialysis reduced plasma chloride concentration by 15\ub13 mEq/L within 4 hours (final pH=7.34\ub10.07). No effective compensatory response occurred in controls (final pH=7.11\ub10.08; p<0.001). No complications occurred. CONCLUSIONS: We described the first in-vivo application of an extracorporeal system targeted to correct severe acidemia by lowering plasma chloride concentration. The CRe-ED proved to be feasible, safe, and effective. Further studies are warranted to assess its performance in presence of impaired respiratory and renal functions

    ABO blood types and major outcomes in patients with acute hypoxaemic respiratory failure: A multicenter retrospective cohort study

    Get PDF
    Introduction ABO blood type A was reported to correlate with an increased risk of acute respiratory distress syndrome (ARDS) in white patients with severe sepsis and major trauma compared with patients with other blood types. Information regarding ABO phenotypes and major outcomes in patients with ARDS is unavailable. The primary aim was to determine the relationship between ABO blood type A and intensive care unit (ICU) mortality in patients with acute hypoxemic respiratory failure (AHRF). The secondary aim was to describe the association between ABO blood type A and ICU length of stay (LOS) in this study population. Methods In a multicenter, retrospective cohort study, we collected the clinical records of patients admitted from January 2012 to December 2014 in five ICUs of Northern Italy. We included adult white patients admitted to the ICU who were diagnosed with AHRF requiring mechanical ventilation. Results The electronic records of 1732 patients with AHRF were reviewed. The proportion of patients with ABO blood type A versus other blood types was 39.9% versus 60.1%. ICU mortality (25%) and ICU LOS (median [interquartile range], 5 [2\u201312] days) were not different when stratified by ABO blood type (ICU mortality, overall p value = 0.905; ICU LOS, overall p value = 0.609). SAPSII was a positive predictor of ICU mortality (odds ration [OR], 32.80; 95% confidence interval [CI], 18.80\u201357.24; p < 0.001) and ICU LOS (\u3b2 coefficient, 0.55; 95% CI, 0.35\u20130.75; p < 0.001) at multivariate analyses, whereas ABO blood type did not predict ICU outcome when forced into the model. Conclusion ABO blood type did not correlate with ICU mortality and ICU LOS in adult patients with AHRF who were mechanically ventilated

    Successful Versus Failed Transition From Controlled Ventilation to Pressure Support Ventilation in COVID-19 Patients: A Retrospective Cohort Study

    Get PDF
    Objectives: In patients with COVID-19 respiratory failure, controlled mechanical ventilation (CMV) is often necessary during the acute phases of the disease. Weaning from CMV to pressure support ventilation (PSV) is a key objective when the patient's respiratory functions improve. Limited evidence exists regarding the factors predicting a successful transition to PSV and its impact on patient outcomes. Design: Retrospective observational cohort study. Setting: Twenty-four Italian ICUs from February 2020 to May 2020. Patients: Mechanically ventilated ICU patients with COVID-19-induced respiratory failure. Intervention: The transition period from CMV to PSV was evaluated. We defined it as "failure of assisted breathing" if the patient returned to CMV within the first 72 hours. Measurements and main results: Of 1260 ICU patients screened, 514 were included. Three hundred fifty-seven patients successfully made the transition to PSV, while 157 failed. Pao2/Fio2 ratio before the transition emerged as an independent predictor of a successful shift (odds ratio 1.00; 95% CI, 0.99-1.00; p = 0.003). Patients in the success group displayed a better trend in Pao2/Fio2, Paco2, plateau and peak pressure, and pH level. Subjects in the failure group exhibited higher ICU mortality (hazard ratio 2.08; 95% CI, 1.42-3.06; p &lt; 0.001), an extended ICU length of stay (successful vs. failure 21 +/- 14 vs. 27 +/- 17 d; p &lt; 0.001) and a longer duration of mechanical ventilation (19 +/- 18 vs. 24 +/- 17 d, p = 0.04). Conclusions: Our study emphasizes that the Pao2/Fio2 ratio was the sole independent factor associated with a failed transition from CMV to PSV. The unsuccessful transition was associated with worse outcomes

    Death in hospital following ICU discharge : insights from the LUNG SAFE study

    Get PDF
    Background: To determine the frequency of, and factors associated with, death in hospital following ICU discharge to the ward. Methods: The Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE study was an international, multicenter, prospective cohort study of patients with severe respiratory failure, conducted across 459 ICUs from 50 countries globally. This study aimed to understand the frequency and factors associated with death in hospital in patients who survived their ICU stay. We examined outcomes in the subpopulation discharged with no limitations of life sustaining treatments (‘treatment limitations’), and the subpopulations with treatment limitations. Results: 2186 (94%) patients with no treatment limitations discharged from ICU survived, while 142 (6%) died in hospital. 118 (61%) of patients with treatment limitations survived while 77 (39%) patients died in hospital. Patients without treatment limitations that died in hospital after ICU discharge were older, more likely to have COPD, immunocompromise or chronic renal failure, less likely to have trauma as a risk factor for ARDS. Patients that died post ICU discharge were less likely to receive neuromuscular blockade, or to receive any adjunctive measure, and had a higher pre- ICU discharge non-pulmonary SOFA score. A similar pattern was seen in patients with treatment limitations that died in hospital following ICU discharge. Conclusions: A significant proportion of patients die in hospital following discharge from ICU, with higher mortality in patients with limitations of life-sustaining treatments in place. Non-survivors had higher systemic illness severity scores at ICU discharge than survivors. Trial Registration: ClinicalTrials.gov NCT02010073

    Implications of early respiratory support strategies on disease progression in critical COVID-19: a matched subanalysis of the prospective RISC-19-ICU cohort.

    Get PDF
    Uncertainty about the optimal respiratory support strategies in critically ill COVID-19 patients is widespread. While the risks and benefits of noninvasive techniques versus early invasive mechanical ventilation (IMV) are intensely debated, actual evidence is lacking. We sought to assess the risks and benefits of different respiratory support strategies, employed in intensive care units during the first months of the COVID-19 pandemic on intubation and intensive care unit (ICU) mortality rates. Subanalysis of a prospective, multinational registry of critically ill COVID-19 patients. Patients were subclassified into standard oxygen therapy ≥10 L/min (SOT), high-flow oxygen therapy (HFNC), noninvasive positive-pressure ventilation (NIV), and early IMV, according to the respiratory support strategy employed at the day of admission to ICU. Propensity score matching was performed to ensure comparability between groups. Initially, 1421 patients were assessed for possible study inclusion. Of these, 351 patients (85 SOT, 87 HFNC, 87 NIV, and 92 IMV) remained eligible for full analysis after propensity score matching. 55% of patients initially receiving noninvasive respiratory support required IMV. The intubation rate was lower in patients initially ventilated with HFNC and NIV compared to those who received SOT (SOT: 64%, HFNC: 52%, NIV: 49%, p = 0.025). Compared to the other respiratory support strategies, NIV was associated with a higher overall ICU mortality (SOT: 18%, HFNC: 20%, NIV: 37%, IMV: 25%, p = 0.016). In this cohort of critically ill patients with COVID-19, a trial of HFNC appeared to be the most balanced initial respiratory support strategy, given the reduced intubation rate and comparable ICU mortality rate. Nonetheless, considering the uncertainty and stress associated with the COVID-19 pandemic, SOT and early IMV represented safe initial respiratory support strategies. The presented findings, in agreement with classic ARDS literature, suggest that NIV should be avoided whenever possible due to the elevated ICU mortality risk

    The PROVENT-C19 registry: A study protocol for international multicenter SIAARTI registry on the use of prone positioning in mechanically ventilated patients with COVID-19 ARDS

    Get PDF
    Background The worldwide use of prone position (PP) for invasively ventilated patients with COVID-19 is progressively increasing from the first pandemic wave in everyday clinical practice. Among the suggested treatments for the management of ARDS patients, PP was recommended in the Surviving Sepsis Campaign COVID-19 guidelines as an adjuvant therapy for improving ventilation. In patients with severe classical ARDS, some authors reported that early application of prolonged PP sessions significantly decreases 28-day and 90-day mortality. Methods and analysis Since January 2021, the COVID19 Veneto ICU Network research group has developed and implemented nationally and internationally the "PROVENT-C19 Registry", endorsed by the Italian Society of Anesthesia Analgesia Resuscitation and Intensive Care. . .'(SIAARTI). The PROVENT-C19 Registry wishes to describe 1. The real clinical practice on the use of PP in COVID-19 patients during the pandemic at a National and International level; and 2. Potential baseline and clinical characteristics that identify subpopulations of invasively ventilated patients with COVID-19 that may improve daily from PP therapy. This web-based registry will provide relevant information on how the database research tools may improve our daily clinical practice. Conclusions This multicenter, prospective registry is the first to identify and characterize the role of PP on clinical outcome in COVID-19 patients. In recent years, data emerging from large registries have been increasingly used to provide real-world evidence on the effectiveness, quality, and safety of a clinical intervention. Indeed observation-based registries could be effective tools aimed at identifying specific clusters of patients within a large study population with widely heterogeneous clinical characteristics. Copyright
    corecore