4,825 research outputs found

    On the origin dependence of multipole moments in electromagnetism

    Get PDF
    The standard description of material media in electromagnetism is based on multipoles. It is well known that these moments depend on the point of reference chosen, except for the lowest order. It is shown that this "origin dependence" is not unphysical as has been claimed in the literature but forms only part of the effect of moving the point of reference. When also the complementary part is taken into account then different points of reference lead to different but equivalent descriptions of the same physical reality. This is shown at the microscopic as well as at the macroscopic level. A similar interpretation is valid regarding the "origin dependence" of the reflection coefficients for reflection on a semi infinite medium. We show that the "transformation theory" which has been proposed to remedy this situation (and which is thus not needed) is unphysical since the transformation considered does not leave the boundary conditions invariant.Comment: 14 pages, 0 figure

    Persistence-driven durotaxis: Generic, directed motility in rigidity gradients

    Get PDF
    Cells move differently on substrates with different elasticities. In particular, the persistence time of their motion is higher on stiffer substrates. We show that this behavior will result in a net transport of cells directed up a soft-to-stiff gradient. Using simple random walk models with controlled persistence and stochastic simulations, we characterize this propensity to move in terms of the durotactic index measured in experiments. A one-dimensional model captures the essential features of this motion and highlights the competition between diffusive spreading and linear, wavelike propagation. Since the directed motion is rooted in a non-directional change in the behavior of individual cells, the motility is a kinesis rather than a taxis. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.Comment: 5 pages, 4 figure

    Tumbleweeds and airborne gravitational noise sources for LIGO

    Full text link
    Gravitational-wave detectors are sensitive not only to astrophysical gravitational waves, but also to the fluctuating Newtonian gravitational forces of moving masses in the ground and air around the detector. This paper studies the gravitational effects of density perturbations in the atmosphere, and from massive airborne objects near the detector. These effects were previously considered by Saulson; in this paper I revisit these phenomena, considering transient atmospheric shocks, and the effects of sound waves or objects colliding with the ground or buildings around the test masses. I also consider temperature perturbations advected past the detector as a source of gravitational noise. I find that the gravitational noise background is below the expected noise floor even of advanced interferometric detectors, although only by an order of magnitude for temperature perturbations carried along turbulent streamlines. I also find that transient shockwaves in the atmosphere could potentially produce large spurious signals, with signal-to-noise ratios in the hundreds in an advanced interferometric detector. These signals could be vetoed by means of acoustic sensors outside of the buildings. Massive wind-borne objects such as tumbleweeds could also produce gravitational signals with signal-to-noise ratios in the hundreds if they collide with the interferometer buildings, so it may be necessary to build fences preventing such objects from approaching within about 30m of the test masses.Comment: 15 pages, 10 PostScript figures, uses REVTeX4.cls and epsfig.st

    Comparison of regional blood flow values measured by radioactive and fluorescent microspheres

    Get PDF
    Fluorescent microspheres (FM) have become an attractive alternative to radioactive microspheres (RM) for the measurement of regional blood flow (RBF). The aim of the present study was to investigate the comparability of both methods by measuring RBF with FM and RM. Eight anaesthetised pigs received simultaneous, left atrial injections of FM and RM with a diameter of 15 mum at six different time points. Blood reference samples were collected from the descending aorta. RBF was determined in tissue samples of the myocardium, spleen and kidneys of all 8 animals. After radioactivity of the tissue samples was determined, the samples were processed automatically for measuring fluorescence using a recently developed filter device (SPU). RBF was calculated with both the isotope and spectrometric data of both methods for each sample resulting in a total of 10,512 blood flow values. The comparison of the RBF values yielded high linear correlation (mean r(2) = 0.95 +/- 0.03 to 0.97 +/- 0.02) and excellent agreement (bias 5.4-6.7%, precision 9.9-16.5%) of both methods. Our results indicate the validity of MS and of the automated tissue processing technique by means of the SPU. Copyright (C) 2002 S. Karger AG, Basel

    The Random Bit Complexity of Mobile Robots Scattering

    Full text link
    We consider the problem of scattering nn robots in a two dimensional continuous space. As this problem is impossible to solve in a deterministic manner, all solutions must be probabilistic. We investigate the amount of randomness (that is, the number of random bits used by the robots) that is required to achieve scattering. We first prove that nlog⁥nn \log n random bits are necessary to scatter nn robots in any setting. Also, we give a sufficient condition for a scattering algorithm to be random bit optimal. As it turns out that previous solutions for scattering satisfy our condition, they are hence proved random bit optimal for the scattering problem. Then, we investigate the time complexity of scattering when strong multiplicity detection is not available. We prove that such algorithms cannot converge in constant time in the general case and in o(log⁥log⁥n)o(\log \log n) rounds for random bits optimal scattering algorithms. However, we present a family of scattering algorithms that converge as fast as needed without using multiplicity detection. Also, we put forward a specific protocol of this family that is random bit optimal (nlog⁥nn \log n random bits are used) and time optimal (log⁥log⁥n\log \log n rounds are used). This improves the time complexity of previous results in the same setting by a log⁥n\log n factor. Aside from characterizing the random bit complexity of mobile robot scattering, our study also closes its time complexity gap with and without strong multiplicity detection (that is, O(1)O(1) time complexity is only achievable when strong multiplicity detection is available, and it is possible to approach it as needed otherwise)

    An Embodied Cognition Perspective on the Role of Interoception in the Development of the Minimal Self

    Get PDF
    Interoception is an often neglected but crucial aspect of the human minimal self. In this perspective, we extend the embodiment account of interoceptive inference to explain the development of the minimal self in humans. To do so, we first provide a comparative overview of the central accounts addressing the link between interoception and the minimal self. Grounding our arguments on the embodiment framework, we propose a bidirectional relationship between motor and interoceptive states, which jointly contribute to the development of the minimal self. We present empirical findings on interoception in development and discuss the role of interoception in the development of the minimal self. Moreover, we make theoretical predictions that can be tested in future experiments. Our goal is to provide a comprehensive view on the mechanisms underlying the minimal self by explaining the role of interoception in the development of the minimal self

    Spatial distances affect temporal prediction and interception.

    Get PDF
    The more distant two consecutive stimuli are presented, the longer the temporal interstimulus interval (ISI) between their presentations is perceived (kappa effect). The present study aimed at testing whether the kappa effect not only affects perceptual estimates of time, but also motor action, more specifically, interception. In a first step, the original kappa paradigm was adapted to assess the effect in temporal prediction. Second, the task was further modified to an interception task, requiring participants to spatially and temporally predict and act. In two online experiments, a white circle was successively presented at three locations moving from left to right with constant spatial and temporal ISIs in between. Participants were asked to either (i) indicate the time of appearance of the predicted fourth stimulus (Exp. 1) or to (ii) intercept the predicted fourth location at the correct time (Exp. 2). In both experiments the temporal response depended on the spatial intervals. In line with the kappa effect, participants predicted the final stimulus to appear later (Exp. 1) or intercepted it later (Exp. 2), the more distant the stimuli were presented. Together, these results suggest that perceptual biases such as the kappa effect impact motor interception performance. [Abstract copyright: © 2022. The Author(s).

    Sobre cinco compuestas errĂłneamente iconografiadas en publicaciones acerca de la biodiversidad de plantas vasculares andorranas

    Get PDF
    Five Compositae taxa which are illustrated in floristic publications for Andorra are questionable records which appear to have never been collected there in the wild.Se comentan cinco taxones de compuestas que aparecen confusamente ilustrados en publicaciones florĂ­sticas de Andorra y que nunca se han recolectado en territorio andorrano

    Phoenix dactylifera L. sap enhances wound healing in Wistar rats : Phytochemical and histological assessment

    Get PDF
    Acknowledgment Financial support of the Tunisian Ministry of Higher Education and Scientific Research is gratefully acknowledged.Peer reviewedPostprin
    • 

    corecore