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Persistence-driven durotaxis: Generic, directed motility in rigidity gradients
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Cells move differently on substrates with different elasticities. In particular, the persistence time
of their motion is higher on stiffer substrates. We show that this behavior will result in a net trans-
port of cells directed up a soft-to-stiff gradient. Using simple random walk models with controlled
persistence and stochastic simulations, we characterize this propensity to move in terms of the duro-
tactic index measured in experiments. A one-dimensional model captures the essential features of
this motion and highlights the competition between diffusive spreading and linear, wavelike propa-
gation. Since the directed motion is rooted in a non-directional change in the behavior of individual
cells, the motility is a kinesis rather than a taxis. Persistence-driven durokinesis is generic and
may be of use in the design of instructive environments for cells and other motile, mechanosensitive
objects.

Cells are acutely aware of the mechanical properties
of their surroundings. The rigidity, or lack thereof, of
the substrate to which a cell is adhering informs a num-
ber of crucial processes: Differentiation, gene expression,
proliferation, and other cellular decisions been shown to
be — at least in part — affected by the stiffness of the
surrounding matrix [1–6]. Cells also move differently de-
pending on the elasticity of the substrate. One of the
more striking manifestations of this is the near-universal
tendency of motile cells to travel up rigidity gradients; a
process generally referred to as durotaxis [7–14], a term
that emphasizes the similarity to chemotaxis, the ten-
dency of cells to move directedly in chemical gradients.
Chemotaxis — generally believed to offer significant evo-
lutionary advantage — allows cells, for instance, to move
towards sources of nutrients. For durotaxis, this advan-
tage is less clear. Motion in stiffness gradients could al-
low neutrophils and cancer cells to seek out optimal loca-
tions for extravasation [15–17], and very similar behavior
of stem cells could contribute to mitigation or regener-
ation of stiff scars and injured tissues [18]. Durotactic
motion is quite universal: without exception it is away
from softer, towards stiffer. In addition to an overall
motion in a gradient, the nature of cellular motion itself
was shown to change quantitatively depending directly
on the local rigidity of the substrate, with cells moving
more persistently on more rigid substrates. In this Letter,
we demonstrate that soft-to-stiff durotaxis is a necessary
consequence of stiffness-dependent persistence, with or
without any rigidity-dependent crawling speed.

Definitions and experimental observations. For cells
moving on uniformly elastic substrates, most experi-
ments record the paths of motile cells by tabulating,
at fixed time intervals ∆t = ti+1 − ti, their position

FIG. 1: Persistence-dependent motility. Simulated trajecto-
ries of 25 cells, departing from the origin at t = 0 with a linear
velocity of 50 µm/hr. Total time is 12 hrs, cellular positions
are recorded at 6-minute intervals. A black dot marks the end
of each cell trajectory. (a) Cells on a soft substrate, with a low
persistence time τp = 0.2 hrs. (b) stiff substrate; persistence
time τp =2 hrs. (c) Gradient substrate, with persistence time
increasing linearly from 0.2 to 2 over the x-range [−0.1, 0.1]
mm (i.e., ∆τp/∆x = 9 hrs/mm). (d) averaged x-displacement
in in the gradient, for different gradient steepnesses (top to
bottom: ∆τp/∆x = 90 hrs/mm, 18 hrs/mm, 9 hrs/mm, 4.5
hrs/mm, 1.8 hrs/mm).

~r(ti) = {x(ti), y(ti)}. The resulting time series consti-
tutes a discrete-time Random Walk (RW). Provided that
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FIG. 2: Evolution of probability with time. Simulated trajec-
tories of 50 cells, departing from the origin at t = 0 with a
linear velocity of 50 µm/hr on a persistence gradient, increas-
ing linearly from 0.2 to 2 over the x-range [−0.1, 0.1] mm
(i.e., ∆τp/∆x = 9 hrs/mm). The cells were tracked for 12
hrs, their positions recorded at 6-minute intervals. A black
dot marks the end of each cell trajectory. (a)-(d) As time pro-
gresses, the asymmetry becomes increasingly clear. (e) The
probability distribution P(x, y) at t = 4 hrs clearly shows a
double-peaked structure: a diffusive peak on the soft side, and
a wavefront further out on the rigid side.

the interval ∆t is sufficiently small, these cellular RW
paths display a certain amount of persistence, reflecting
the tendency to keep moving along the same direction
(or, equivalently, the cell’s inability to turn on very short
timescales). This persistence is quantified by the per-
sistence time τp. For cells moving at a constant linear
velocity (i.e., the velocity along their path) vc, this per-
sistence time may be obtained by analyzing the displace-
ment statistics of the path, either as the decay time the
tangent autocorrelation, or by fitting to the formula for
the mean squared displacement for a persistent random
walk (PRW) [19]

〈|~r2|〉(t) = 2v2cτ
2
p

(
t

τp
+ e−t/τp − 1

)
. (1)

The average, here, is taken over many different trajec-
tories at the same time point ti = t or, equivalently,
over many points separated by the same time interval
t = tj − ti along the same cell trajectory. We note, that
while the PRW correctly describes cellular motility in
2D, it fails in 3D [20] — one of many important differ-
ences between 2D and 3D processes of cellular adhesion
and migration. Although Raab et al. showed [11] that
cells migrate more frequently into a soft collagen over-
lay when they start from a soft gel compared to a stiff
gel, which is consistent with 3D durotaxis, we restrict
ourselves to the case of 2D motility here, to make our
general point. The limiting behavior of this equation is
instructive: for short times t � τp it describes ballistic
motion 〈|~r2|〉(t) ≈ (vct)

2, whereas for long times t � τp
the motion is a pure random walk; 〈|~r2|〉(t) ≈ 2v2cτpt.
Thus, the persistence time is the characteristic timescale
for the crossover between ballistic and diffusive motion.

A trivial point, which nonetheless bears repeating here,
is that the first moment of the vectorial displacement
vanishes, for RW and PRW alike: 〈~r〉(t) = ~0 – this is
no longer the case for durotactic processes. A mean-
ingful question, now, is to ask how the parameters that
quantify persistence and directed displacement change
with the properties of the substrate. While the tendency
to move from soft to stiff substrates has been broadly
noted and characterized [21–25], the persistence of cells
as they do so has only recently begun to be quantita-
tively addressed. A potential relation between the two
has been hinted at in passing, but not further substati-
ated. In experiments recording the motility of fibroblasts
on uniformly elastic PEG hydrogels, Missirlis and Spatz
[12] demonstrate that the persistence time - quantified
by a Directionality Index ∆(t) =

√
〈|~r2|〉(t)/(vct) ∝ τp

recorded at the same time on substrates coated with dif-
ferent ligands, rises by about a factor of 3 when the sub-
strate stiffness is increased from 5.5 to 65.7 kPa. Over
the same range of stiffnesses, a decrease of vc by about
33% (from 60 µm/hr to 40 µm/hr) is reported. House
et al [26] place fibroblasts on uniformly elastic PAM hy-
drogels, and report that their persistence time increases
by a factor of 3 when the gel stiffness is varied from 10
kPa to 150 kPa. Interestingly, and in contrast to Mis-
sirlis and Spatz, House et al. report an increase of vc
with substrate stiffness by a factor of about 2 from 21.6
µm/hr to 42.7 µm/hr over the same stiffness range. A
preliminary test, reported in [26], suggests the cells move
in the direction of increased persistence. In earlier work
[11], Raab et al. quantify the motility of mesenchymal
stem cells on uniform PAM substrates - likewise showing
an increase in persistence time of about a factor of 3 from
0.7 hrs to 2.1 hrs when the substrate stiffness is varied
from 1 kPa to 34 kPa. Raab et al. report no signifi-
cant change in the cell velocity vc over the entire range
of stiffnesses they study. Importantly, however, Raab et
al. also show that the same cells, on the same substrates
that are now gradiented in stiffness from 1 kPa to 34
kPa, the cells move towards the stiff side with a duro-
taxis index equal to about 0.2. In summary, experiments
unanimously suggest that cells move more persistently
on stiffer substrates, and that when they do, they move
from soft to rigid. This behavior is independent of the
relation between velocity and stiffness, which appears to
be more cell-type dependent although a recent work sug-
gests that speed and persistence may be correlated [14].
As persistence is linked to microtubule (re)positioning
with respect to the nucleus, and this process is greatly
hampered in 1D motility (cells in narrow channels), the
correlation between cell speed and persistence may well
be different in different dimensions, but we stress that
our results are largely unaffected by the variations in cell
speed (cf., Fig 3), stiffness dependent or not. The empir-
ical fact that two behaviors – increasing persistence and
soft-to-stiff motion – coincide suggests they might not be
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independent. To examine whether there is indeed a cau-
sation underlying the correlation, we perform stochastic
simulations of PRW’s with spatially varying persistence
times.
Simulation setup and results. We consider a 2D sub-

strate, endowed with a gradient in stiffness that mani-
fests itself as a position-dependent persistence time τp(x)
and a position-dependent velocity vc(x). To simulate
the variable-persistence, variable cell speed PRW in this
gradient, we generate trajectories as follows: Starting
in the origin at t = 0, a random initial direction θ0
is chosen, along which the cell is displaced by a dis-
tance ∆r1 = vc(0)∆t. For all subsequent steps, a de-
viation angle −π < δθ < π is picked randomly from a
Gaussian distribution centered around δθ = 0 with vari-
ance σ2 = 2∆t/τp(x) using the Box-Muller transform,
x being the instantaneous x-position. The next point
is placed a distance ∆r2 = vc(x)∆t in the θ0 + δθ di-
rection, this last step is repeated N = ttot/∆t times to
complete a trajectory representing a total time ttot. The
substrate has a persistence time and velocity τp,min and
vc,left at x = −∞, τp,max and vc,right at x =∞, with both
τp and vc transitioning linearly, with variable steepness,
between their asymptotic values symmetrically around
x = 0. Much like most experimental settings, the gradi-
ent thus occupies only part of the system, and is flanked
by uniformly elastic regions to either side. We will al-
ways choose left to right to be the direction of increasing
persistence but will, for demonstrational purposes, allow
the velocity to decrease or increase from left to right.
For each realization of the gradient, on the order of 105

trajectories are generated to obtain accurate averages.
We assume, for now that vc(x) ≡ vc; a constant (later

on, we will briefly demonstrate that our findings are
largely insensitive to increases or decreases in vc with
stiffness). Our main finding is summarized in Fig. 1:
a gradient in persistence produces a soft-to-stiff flux of
cells, and confers upon them, for typical values, an effec-
tive velocity up the stiffness gradient of 2-10 µm/hr. The
origin of the effect is readily read off from Fig. 1 (a)-(c);
PRW trajectories become asymmetric in the gradient,
and those trajectories that either depart up the gradient,
or at some point in time first turn towards the stiff direc-
tion, travel further in the stiff direction, on average. This
leads to a nonzero 〈x〉(t), and the effective velocity - over
the ∼ 12 hr course of a typical experiment, increases with
increasing gradient steepness. Fig. 2(e) plots the proba-
bility distribution P(x, y) of finding a cell at position x, t
after t = 4 hrs and shows the crucial statistical feature
that gives rise to the nonzero center-of-mass motion. On
the left, less persistent, side of the substrate the distri-
bution resembles that of a diffusive process. On the right
side, where motion is more persistent, a narrower peak
moves outward at constant velocity.

The net motion that results from differentially persis-
tent PRW’s executed in a stiffness gradient is reminiscent

FIG. 3: Durotactic index as function of time. Main figure:
x-component of the durotactic index vs time for cells mov-
ing in a rigidity gradient, with τp increasing linearly from
0.2 to 2 over the x-range [−0.1, 0.1] mm. Averages com-
puted over 5·104 trajectories. Black line, black dots: stiffness-
independent velocity vc = 50µm/hr everywhere. Red-dashed
line: the same system, but with a velocity that rises with
persistence; vc = 20 − 80µm/hr accross the gradient re-
gion. Blue-dashed line: velocity decreases with persistence;
vc = 80 − 20µm/hr accross the gradient region. Inset: The
effective velocity over the 12 hr window as a function of the
gradient strength. All gradients had τp varying from 0.2 to 2,
but over different spatial ranges.

of the motion that chemotactic bacteria execute in, for
instance, a gradient in nutrient concentration [27]. To be
sure, in both cases an environmental gradient sets up a
flux, but to what extent are these processes truly simi-
lar? Following [24, 25], it is instructive to scrutinize the
motility using a durotactic (vector-)index

~DI(t) = {DIx(t),DIy(t)} ≡ 〈~r〉(t)
vct

. (2)

For all - persistent and non-persistent - non-directional
processes ~DI(t) = ~0. For the gradients studied here
DIy(t) = 0; we report only the x-component. In the
main panel of Fig. 3, we plot DIx(t) for a representative
set of parameters (listed in the caption). The general be-
havior is, that DIx(t) initially rises, peaks at a few times
the persistence time, and then slowly drops back down,
proportional to t−1/2 (cf., inset Fig. 4). Fig 3 also shows,
that this behavior remains qualitatively the same regard-
less of whether vc increases, decreases or stays the same
through the gradient. Since the DI is directly propor-
tional to the effective velocity in the direction of the gra-
dient, this is also the expected behavior for the effective
velocity which is thus a time dependent quantity for this
processes. This is in contrast to the ’run-and-tumble’
behavior that underlies chemotaxis in, for instance, E.
coli, which acquires a finite drift velocity in a gradient by
modifying the tumble frequency [27]. Thus, the presence
or absence of a plateau in DIx(t) for longer times could
be a reliable way to discriminate the motion we discuss
here from a ’regular’ taxis.
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1D model and an inhomogeneous telegraph equation.
We map the process to one dimension by studying the
dispersal of walkers on a line. The equivalent of a spa-
tially dependent persistence, here, is a spatially depen-
dent turning frequency λ(x). Typical behavior in a gradi-
ent is collected in Fig. 4 and confirms the dual behavior
also seen in two dimensions: the softer side is diffusion-
dominated while the more rigid side displays a wavelike
propagation. To derive the appropriate continuum equa-
tion, we apply a similar approach to the one presented
for uniform turning rates in [24], and consider separately
the two densities of left- and right movers; ρ+(x, t) and
ρ−(x, t), normalized such that P(x, t) = ρ+ + ρ−, is the
total probability density. After a time step ∆t, each
walker reverses direction with a probability π = λ(x)∆t,
or continues (with probability 1− π(x)) along the previ-
ous direction. During each time step, it travels a distance
∆x = vc∆t. The densities ρ+ and ρ− then obey

ρ+(x, t+∆t) = [1− λ(x−∆x)∆t] ρ+(x−∆x, t)

+[λ(x−∆x)∆t]ρ−(x−∆x, t) , (3)
ρ−(x, t+∆t) = [λ(x+∆x)∆t]ρ+(x+∆x, t)

+ [1− λ(x+∆x)∆t] ρ−(x+∆x, t) . (4)

Expanding these two equations to first order in ∆x and
∆t and combining them using P = ρ+ + ρ− yields the
following governing PDE

∂2t P + 2λ(x)∂tP = v2c∂
2
xP . (5)

A spatially varying velocity may be included by replac-
ing vc → vc(x). This inhomogeneous telegraph equation
is also the appropriate mode to use for effectively one-
dimension migration experiments. To connect with the
two-dimensional case, we may identify 2λ(x) ' τ−1

p . The
two competing behaviors are readily recognized in the
PDE; for large turning frequencies (i.e., short persistence
times) the second order time derivative is dominated by
the first order term, and diffusive behavior emerges. For
low turning frequencies – highly persistent motion – a
wave equation is recovered. In principle, this equation,
supplemented with a specific form for the persistence
gradient λ(x), and the appropriate boundary conditions
(generally, P(x, 0) = δ(x) and ∂tP(x, 0) = 0), allows one
to compute averaged displacements as moments in this
distribution. Due to the x-dependent λ-term this is far
from trivial – we will address this in an upcoming publi-
cation.
Conclusions and Outlook. In this Letter, we demon-

strate how a broadly reported feature of cellular motility
– a dependence of the persistence of movement on the
rigidity of the substrate – leads, without further assump-
tions, to universal soft-to-stiff motion on gradiented sub-
strates. The motion is faster, on experimental timescales,
for steeper gradients though over timescales much longer

FIG. 4: Evolution of 1D inhomogeneous telegraph probability.
Probability distributions P(x, t) determined by direct integra-
tion of Eq. 5. The turning probability λ(x) decreased linearly
from 0.4 to 0.02 over the x-interval [−5, 5]. From left to right,
we plot distributions for t = 10 . . . 100 with 10 unit time in-
tervals. Clearly visible is the diffusive spreading on the left,
vs. the wave-like propagation to the right. The inset shows
the long-time t−1/2 behavior of DI(t).

than the persistence time, the effective velocity (and the
associated durotactic index) decreases (cf., inset Fig. 4),
in contrast to what happens in bacterial chemotaxis. For
the type of motion we report here, the term durotaxis
may be a bit of a misnomer. Following the suggestions
laid out in [28], the flux set up by gradients in the lo-
cal, substrate-informed persistence is perhaps more ac-
curately described as a (positional) kinesis – an "almost
instantaneous response induced by a purely positional sig-
nal". That is, a non-directional change in behavior as op-
posed to the directional changes typical for chemotaxis.
This distinction goes beyond semantics: it suggests that
durotaxis in a stiffness gradient is not to be interpreted
as the existence of a preferred stiffness for the cell, which
it is purposefully migrating towards. Without dismissing
the possibility that other mechanisms not considered here
could lead to such properly durotactic motion, we show
here that – at the very least to an extent that is worth
determining in much greater detail – soft-to-stiff migra-
tion is an unavoidable consequence of stiffness-dependent
persistence. The generic nature of durokinesis suggests
it as a potentially worthwhile mechanism to pursue in
the development of instructive environments (for an early
demonstration see, for instance, [29]); our results show
that any stochastic, particulate system whose persistence
is informed, locally, by some external parameter has the
potential to harness this kinetic transport mechanism.
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