469 research outputs found

    Spin flip from dark to bright states in InP quantum dots

    Full text link
    We report measurements of the time for spin flip from dark (non-light emitting) exciton states in quantum dots to bright (light emitting) exciton states in InP quantum dots. Dark excitons are created by two-photon excitation by an ultrafast laser. The time for spin flip between dark and bright states is found to be approximately 200 ps, independent of density and temperature below 70 K. This is much shorter than observed in other quantum dot systems. The rate of decay of the luminescence intensity, approximately 300 ps, is not simply equal to the radiative decay rate from the bright states, because the rate of decay is limited by the rate of conversion from dark excitons into bright excitons. The dependence of the luminescence decay time on the spin flip time is a general effect that applies to many experiments.Comment: 3 figure

    Helium irradiation effects in polycrystalline Si, silica, and single crystal Si

    Get PDF
    Transmission electron microscopy (TEM) has been used to investigate the effects of room temperature 6 keV helium ion irradiation of a thin (≈55 nm thick) tri-layer consisting of polycrystalline Si, silica, and single-crystal Si. The ion irradiation was carried out in situ within the TEM under conditions where approximately 24% of the incident ions came to rest in the specimen. This paper reports on the comparative development of irradiation-induced defects (primarily helium bubbles) in the polycrystalline Si and single-crystal Si under ion irradiation and provides direct measurement of a radiation-induced increase in the width of the polycrystalline layer and shrinkage of the silica layer. Analysis using TEM and electron energy-loss spectroscopy has led to the hypothesis that these result from helium-bubble-induced swelling of the silicon and radiation-induced viscoelastic flow processes in the silica under the influence of stresses applied by the swollen Si layers. The silicon and silica layers are sputtered as a result of the helium ion irradiation; however, this is estimated to be a relatively minor effect with swelling and stress-related viscoelastic flow being the dominant mechanisms of dimensional change

    On noise treatment in radio measurements of cosmic ray air showers

    Get PDF
    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transfered to other experiments in radio and acoustic detection of cosmic rays and neutrinos.Comment: 4 pages, 6 figures, submitted to NIM A, Proceedings of ARENA 2010, Nantes, Franc

    A comparison of the cosmic-ray energy scales of Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES

    Get PDF
    The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100100\,PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10%10\,\% - limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level

    The wavefront of the radio signal emitted by cosmic ray air showers

    Get PDF
    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 101710^{17}\,eV and zenith angles smaller than 4545^\circ, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances 50\gtrsim 50\,m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140140\,g/cm2^2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, XmaxX_\mathrm{max}, better than 3030\,g/cm2^2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.Comment: accepted by JCA

    Differential response of esophageal cancer cells to particle irradiation

    Get PDF
    Background: Radiation therapy is a mainstay in the treatment of esophageal cancer (EC) patients, and photon radiotherapy has proved beneficial both in the neoadjuvant and the definitive setting. However, regarding the still poor prognosis of many EC patients, particle radiation employing a higher biological effectiveness may help to further improve patient outcomes. However, the influence of clinically available particle radiation on EC cells remains largely unknown. Methods: Patient-derived esophageal adenocarcinoma and squamous cell cancer lines were treated with photon and particle irradiation using clinically available proton (1H), carbon (12C) or oxygen (16O) beams at the Heidelberg Ion Therapy Center. Histology-dependent clonogenic survival was calculated for increasing physical radiation doses, and resulting relative biological effectiveness (RBE) was calculated for each radiation modality. Cell cycle effects caused by photon and particle radiation were assessed, and radiation-induced apoptosis was measured in adenocarcinoma and squamous cell EC samples by activated caspase-3 and sub-G1 populations. Repair kinetics of DNA double strand breaks induced by photon and particle radiation were investigated. Results: While both adenocarcinoma EC cell lines demonstrated increasing sensitivities for 1H, 12C and 16O radiation, the two squamous cell carcinoma lines exhibited a more heterogeneous response to photon and particle treatment; average RBE values were calculated as 1.15 for 1H, 2.3 for 12C and 2.5 for 16O irradiation. After particle irradiation, squamous cell EC samples reacted with an increased and prolonged block in G2 phase of the cell cycle compared to adenocarcinoma cells. Particle radiation resulted in an incomplete repair of radiation-induced DNA double strand breaks in both adenocarcinoma and squamous cell carcinoma samples, with the levels of initial strand break induction correlating well with the individual cellular survival after photon and particle radiation. Similarly, EC samples demonstrated heterogeneous levels of radiation-induced apoptosis that also corresponded to the observed cellular survival of individual cell lines. Conclusions: Esophageal cancer cells exhibit differential responses to irradiation with photons and 1H, 12C and 16O particles that were independent of tumor histology. Therefore, yet unknown molecular markers beyond histology may help to establish which esophageal cancer patients benefit from the biological effects of particle treatment
    corecore