543 research outputs found

    Soft Photons from Off-shell Particles in a Hot Plasma

    Get PDF
    Considering the propagation of off-shell particles in the framework of thermal field theory, we present the general formalism for the calculation of the production rate of soft photons and dileptons from a hot plasma. This approach is illustrated with an electrodynamic plasma. The photon production rate from strongly interacting quarks in the quark-gluon plasma, which might be formed in ultrarelativistic heavy ion collisions, is calculated in the previously unaccessible regime of photon energies of the order of the plasma temperature within an effective field theory incorporating dynamical chiral symmetry breaking.Comment: 8 pages in RevTeX format, 3 figures uuencoded postscript added. Also available by anonymous ftp at ftp://tpri6c.gsi.de/pub/phenning/qh95ga

    Methyl iodide production in the open ocean

    Get PDF
    Production pathways of the prominent volatile organic halogen compound methyl iodide (CH3I) are not fully understood. Based on observations, production of CH3I via photochemical degradation of organic material or via phytoplankton production has been proposed. Additional insights could not be gained from correlations between observed biological and environmental variables or from biogeochemical modeling to identify unambiguously the source of methyl iodide. In this study, we aim to address this question of source mechanisms with a three-dimensional global ocean general circulation model including biogeochemistry (MPIOM-HAMOCC (MPIOM - Max Planck Institute Ocean Model HAMOCC - HAMburg Ocean Carbon Cycle model)) by carrying out a series of sensitivity experiments. The simulated fields are compared with a newly available global data set. Simulated distribution patterns and emissions of CH3I differ largely for the two different production pathways. The evaluation of our model results with observations shows that, on the global scale, observed surface concentrations of CH3I can be best explained by the photochemical production pathway. Our results further emphasize that correlations between CH3I and abiotic or biotic factors do not necessarily provide meaningful insights concerning the source of origin. Overall, we find a net global annual CH3I air-sea flux that ranges between 70 and 260 Gg yr(-1). On the global scale, the ocean acts as a net source of methyl iodide for the atmosphere, though in some regions in boreal winter, fluxes are of the opposite direction (from the atmosphere to the ocean)

    Two regularizations - two different models of Nambu-Jona-Lasinio

    Full text link
    Two variants of the Nambu--Jona-Lasinio model -- the model with 4-dimensional cutoff and the model with dimensionally-analytical regularization -- are systematically compared. It is shown that they are, in essence, two different models of light-quark interaction. In the mean-field approximation the distinction becomes apparent in a behavior of scalar amplitude near the threshold. For 4-dimensional cutoff the pole term can be extracted, which corresponds to sigma-meson. For dimensionally-analytical regularization the singularity of the scalar amplitude is not pole, and this singularity is quite disappeared at some value of the regularization parameter. Still more essential distinction of these models exists in the next-to-leading order of mean-field expansion. The calculations of meson contributions in the quark chiral condensate and in the dynamical quark mass demonstrate, that these contributions though their relatively smallness can destabilize the Nambu--Jona-Lasinio model with 4-dimensional cutoff. On the contrary, the Nambu--Jona-Lasinio model with dimensionally-analytical regularization is stabilized with the next-to-leading order, i.e. the value of the regularization parameter shifts to the stability region, where these contributions decrease.Comment: 14 pages; Journal version; parameter fixing procedure is modifie

    Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer

    Get PDF
    We conducted measurements of the five important short-lived organic bromine species in the marine boundary layer (MBL). Measurements were made in the Northern Hemisphere mid-latitudes (Sylt Island, North Sea) in June 2009 and in the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series on Sylt Island, mean mixing ratios of CHBr3, CH2Br2, CHBr2Cl and CH2BrCl were 2.0, 1.1, 0.2, 0.1 ppt, respectively. We found maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41° N and 13° S) we measured mean mixing ratios of 0.9, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two data sets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl). Using a combined data set from the two campaigns and a comparison with the results from two former studies, rough estimates of the molar emission ratios between the correlated substances were: 9/1/0.35/0.35 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL) above Teresina (Brazil, 5° S) in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH) at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13% of total organic bromine (17.82 ppt). CH2Br2 (1.45 ppt) and CHBr3 (0.56 ppt) accounted for 90% of the budget of short-lived compounds in that region. Near the tropopause (at 17.5 km) organic bromine from these substances was reduced to 1.35 ppt, with 1.07 and 0.12 ppt attributed to CH2Br2 and CHBr3, respectively

    Meteorological constraints on oceanic halocarbons above the Peruvian Upwelling

    Get PDF
    During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian upwelling. This study presents novel observations of the three very short lived substances (VSLSs) – bromoform, dibromomethane and methyl iodide – together with high-resolution meteorological measurements, Lagrangian transport and source–loss calculations. Oceanic emissions of bromoform and dibromomethane were relatively low compared to other upwelling regions, while those for methyl iodide were very high. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting as strong barriers for convection and vertical transport of trace gases in this region. Observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height correlated well during the cruise. We used a simple source–loss estimate to quantify the contribution of oceanic emissions along the cruise track to the observed atmospheric concentrations. This analysis showed that averaged, instantaneous emissions could not support the observed atmospheric mixing ratios of VSLSs and that the marine background abundances below the trade inversion were significantly influenced by advection of regional sources. Adding to this background, the observed maximum emissions of halocarbons in the coastal upwelling could explain the high atmospheric VSLS concentrations in combination with their accumulation under the distinct MABL and trade inversions. Stronger emissions along the nearshore coastline likely added to the elevated abundances under the steady atmospheric conditions. This study underscores the importance of oceanic upwelling and trade wind systems on the atmospheric distribution of marine VSLS emissions

    Impact of the marine atmospheric boundary layer conditions on VSLS abundances in the eastern tropical and subtropical North Atlantic Ocean

    Get PDF
    During the DRIVE (Diurnal and Regional Variability of Halogen Emissions) ship campaign we investigated the variability of the halogenated very short-lived substances (VSLS) bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) in the marine atmospheric boundary layer in the eastern tropical and subtropical North Atlantic Ocean during May/June 2010. The highest VSLS mixing ratios were found near the Mauritanian coast and close to Lisbon (Portugal). With backward trajectories we identified predominantly air masses from the open North Atlantic with some coastal influence in the Mauritanian upwelling area, due to the prevailing NW winds. The maximum VSLS mixing ratios above the Mauritanian upwelling were 8.92 ppt for bromoform, 3.14 ppt for dibromomethane and 3.29 ppt for methyl iodide, with an observed maximum range of the daily mean up to 50% for bromoform, 26% for dibromomethane and 56% for methyl iodide. The influence of various meteorological parameters - such as wind, surface air pressure, surface air and surface water temperature, humidity and marine atmospheric boundary layer (MABL) height - on VSLS concentrations and fluxes was investigated. The strongest relationship was found between the MABL height and bromoform, dibromomethane and methyl iodide abundances. Lowest MABL heights above the Mauritanian upwelling area coincide with highest VSLS mixing ratios and vice versa above the open ocean. Significant high anti-correlations confirm this relationship for the whole cruise. We conclude that especially above oceanic upwelling systems, in addition to sea-air fluxes, MABL height variations can influence atmospheric VSLS mixing ratios, occasionally leading to elevated atmospheric abundances. This may add to the postulated missing VSLS sources in the Mauritanian upwelling region (Quack et al., 2007)
    corecore