20 research outputs found

    The complete inventory of receptors encoded by the rat natural killer cell gene complex

    Get PDF
    The natural killer cell gene complex (NKC) encodes receptors belonging to the C-type lectin superfamily expressed primarily by NK cells and other leukocytes. In the rat, the chromosomal region that starts with the Nkrp1a locus and ends with the Ly49i8 locus is predicted to contain 67 group V C-type lectin superfamily genes, making it one of the largest congregation of paralogous genes in vertebrates. Based on physical proximity and phylogenetic relationships between these genes, the rat NKC can be divided into four major parts. We have previously reported the cDNA cloning of the majority of the genes belonging to the centromeric Nkrp1/Clr cluster and the two telomeric groups, the Klre1–Klri2 and the Ly49 clusters. Here, we close the gap between the Nkrp1/Clr and the Klre1–Klri2 clusters by presenting the cDNA cloning and transcription patterns of eight genes spanning from Cd69 to Dectin1, including the novel Clec2m gene. The definition, organization, and evolution of the rat NKC are discussed

    B7-H1-Deficiency Enhances the Potential of Tolerogenic Dendritic Cells by Activating CD1d-Restricted Type II NKT Cells

    Get PDF
    Background: Dendritic cells (DC) can act tolerogenic at a semi-mature stage by induction of protective CD4+ T cell and NKT cell responses. Methodology/Principal Findings: Here we studied the role of the co-inhibitory molecule B7-H1 (PD-L1, CD274) on semimature DC that were generated from bone marrow (BM) cells of B7-H12/2 mice and applied to the model of Experimental Autoimmune Encephalomyelitis (EAE). Injections of B7-H1-deficient DC showed increased EAE protection as compared to wild type (WT)-DC. Injections of B7-H12/2 TNF-DC induced higher release of peptide-specific IL-10 and IL-13 after restimulation in vitro together with elevated serum cytokines IL-4 and IL-13 produced by NKT cells, and reduced IL-17 and IFN-c production in the CNS. Experiments in CD1d2/2 and Ja2812/2 mice as well as with type I and II NKT cell lines indicated that only type II NKT cells but not type I NKT cells (invariant NKT cells) could be stimulated by an endogenous CD1d-ligand on DC and were responsible for the increased serum cytokine production in the absence of B7-H1. Conclusions/Significance: Together, our data indicate that BM-DC express an endogenous CD1d ligand and B7-H1 to ihibit type II but not type I NKT cells. In the absence of B7-H1 on these DC their tolerogenic potential to stimulate tolerogenic CD4+ and NKT cell responses is enhanced

    Characterisation of murine MICL (CLEC12A) and evidence for an endogenous ligand.

    No full text
    Inhibitory receptors are required for the control of cellular activation and they play essential roles in regulating homeostasis and immunity. We previously identified a human inhibitory C-type lectin-like receptor, MICL (CLEC12A), a heavily glycosylated monomer predominantly expressed on myeloid cells. Here we characterise the murine homolog of MICL (mMICL), and demonstrate that the receptor is structurally and functionally similar to the human orthologue (hMICL), although there are some notable differences. mMICL is expressed as a dimer and is not heavily glycosylated; however, like hMICL, the receptor can recruit inhibitory phosphatases upon activation, and is down-regulated on leukocytes following stimulation with selected TLR agonists. Using novel monoclonal antibodies, we demonstrate that, like the human receptor, mMICL is predominantly expressed by myeloid cells. However, mMICL is also expressed by B cells and CD8+ T cells in peripheral blood, and NK cells in the bone marrow. Finally, we show that mMICL recognises an endogenous ligand in a variety of murine tissues, suggesting that the receptor plays a role in homeostasis

    The complementarity determining region 2 of BV8S2 (V beta 8.2) contributes to antigen recognition by rat invariant NKT cell TCR

    No full text
    Invariant NKT cells (iNKT cells) are characterized by a semi-invariant TCR comprising an invariant a-chain paired with beta-chains with limited BV gene usage which are specific for complexes of CD1d and glycolipid Ags like a-galactosylceramide (a-GalCer). iNKT cells can be visualized with a-GalCer-loaded CD1d tetramers, and the binding of mouse CD1d tetramers to mouse as well as to human iNKT cells suggests a high degree of conservation in recognition of glycolipid Ags between species. Surprisingly, mouse CD1d tetramers failed to stain a discrete cell population among F344/Crl rat liver lymphocytes, although comprised iNKT cells are indicated by IL-4 and IFN-gamma secretion after a-GalCer stimulation. The arising hypothesis that rat iNKT TCR recognizes alpha-GalCer only if presented by syngeneic CD1d was then tested with the help of newly generated rat and mouse iNKT TCR-transduced cell lines. Cells expressing mouse iNKT TCR reacted to a-GalCer presented by rat or mouse CD1d and efficiently bound a-GalCer-loaded mouse CD1d tetramers. In contrast, cells expressing rat iNKT TCR responded only to a-GalCer presented by syngeneic CD1d and bound mouse CD1d tetramers only poorly or not at ail. Finally, CD1d-dependent a-GalCer reactivity and binding of mouse CD1d tetramers was tested for cells expressing iNKT TCR comprising either rat or mouse AV14 (V alpha 14) a-chains and wild-type or mutated BV8S2 (V beta 8.2) beta-chains. The results confirmed the need of syngeneic CD1d as restriction element for rat iNKT TCR and identified the CDR2 of BV8S2 as an essential site for ligand recognition by iNKT TCR

    Human MICL (CLEC12A) is differentially glycosylated and is down-regulated following cellular activation.

    No full text
    C-type lectins are the most diverse and prevalent lectin family in immunity. Particular interest has recently been attracted by the C-type lectin-like receptors on NK cells, which appear to regulate the activation/inhibitory balance of these cells, controlling cytotoxicity and cytokine production. We previously identified a human C-type lectin-like receptor, closely related to both the beta-glucan receptor and the lectin-like receptor for oxidized-LDL, named MICL (myeloid inhibitory C-type lectin-like receptor), which we had shown using chimeric analysis to function as an inhibitory receptor. Using a novel MICL-specific monoclonal antibody, we show here that human MICL is expressed primarily on myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Although MICL was highly N-glycosylated in primary cells, the level of glycosylation was found to vary between cell types. MICL surface expression was down-regulated during inflammatory/activation conditions in vitro, as well as during an in vivo model of acute inflammation, which we characterize here. This suggests that human MICL may be involved in the control of myeloid cell activation during inflammation

    Human MICL (CLEC12A) is differentially glycosylated and is down-regulated following cellular activation.

    No full text
    C-type lectins are the most diverse and prevalent lectin family in immunity. Particular interest has recently been attracted by the C-type lectin-like receptors on NK cells, which appear to regulate the activation/inhibitory balance of these cells, controlling cytotoxicity and cytokine production. We previously identified a human C-type lectin-like receptor, closely related to both the beta-glucan receptor and the lectin-like receptor for oxidized-LDL, named MICL (myeloid inhibitory C-type lectin-like receptor), which we had shown using chimeric analysis to function as an inhibitory receptor. Using a novel MICL-specific monoclonal antibody, we show here that human MICL is expressed primarily on myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Although MICL was highly N-glycosylated in primary cells, the level of glycosylation was found to vary between cell types. MICL surface expression was down-regulated during inflammatory/activation conditions in vitro, as well as during an in vivo model of acute inflammation, which we characterize here. This suggests that human MICL may be involved in the control of myeloid cell activation during inflammation

    Human MICL (CLEC12A) is differentially glycosylated and is down-regulated following cellular activation

    No full text
    C-type lectins are the most diverse and prevalent lectin family in immunity. Particular interest has recently been attracted by the C-type lectin-like receptors on NK cells, which appear to regulate the activation/inhibitory balance of these cells, controlling cytotoxicity and cytokine production. We previously identified a human C-type lectin-like receptor, closely related to both the beta-glucan receptor and the lectin-like receptor for oxidized-LDL, named MICL (myeloid inhibitory C-type lectin-like receptor), which we had shown using chimeric analysis to function as an inhibitory receptor. Using a novel MICL-specific monoclonal antibody, we show here that human MICL is expressed primarily on myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Although MICL was highly N-glycosylated in primary cells, the level of glycosylation was found to vary between cell types. MICL surface expression was down-regulated during inflammatory/activation conditions in vitro, as well as during an in vivo model of acute inflammation, which we characterize here. This suggests that human MICL may be involved in the control of myeloid cell activation during inflammation

    Sensing Tissue Damage by Myeloid C-Type Lectin Receptors

    Get PDF
    After both sterile and infectious insults, damage is inflicted on tissues leading to accidental or programmed cell death. In addition, events of programmed cell death also take place under homeostatic conditions, such as in embryo development or in the turnover of hematopoietic cells. Mammalian tissues are seeded with myeloid immune cells, which harbor a plethora of receptors that allow the detection of cell death, modulating immune responses. The myeloid C-type lectin receptors (CLRs) are one of the most prominent families of receptors involved in tailoring immunity after sensing dead cells. In this chapter, we will cover a diversity of signals arising from different forms of cell death and how they are recognized by myeloid CLRs. We will also explore how myeloid cells develop their sentinel function, exploring how some of these CLRs identify cell death and the type of responses triggered thereof. In particular, we will focus on DNGR-1 (CLEC9A), Mincle (CLEC4E), CLL-1 (CLEC12A), LOX-1 (OLR1), CD301 (CLEC10A) and DEC-205 (LY75) as paradigmatic death-sensing CLRs expressed by myeloid cells. The molecular processes triggered after cell death recognition by myeloid CLRs contribute to the regulation of immune responses in pathologies associated with tissue damage, such as infection, autoimmunity and cancer. A better understanding of these processes may help to improve the current approaches for therapeutic intervention.Carlos Del Fresno is supported by AECC Foundation (INVES192DELF). Francisco Javier Cueto is the recipient of a Ph.D. “La Caixa” fellowship (LCF/BQ/ES14/10320011). Work in the DS laboratory is funded by the CNIC; by the European Research Council (ERC-2016-Consolidator Grant 725091); by the European Commission (635122-PROCROP H2020); by Ministerio de Ciencia, Innovación e Universidades (MICINN), Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R); by Comunidad de Madrid (B2017/BMD-3733 Immunothercan-CM); by FIS-Instituto de Salud Carlos III, MICINN and FEDER (RD16/0015/0018-REEM); by Acteria Foundation; by Atresmedia (Constantes y Vitales prize) and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the MICINN and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S
    corecore