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ABSTRACT 

After both sterile or infectious insults, damage is inflicted to tissues leading to accidental 

or programmed cell death. In addition, events of programmed cell death also take place 

under homeostatic conditions, such as in embryo development or in the turnover of 

hematopoietic cells. Mammalian tissues are seeded with myeloid immune cells, which 

harbor a plethora of receptors that allow the detection of cell death, modulating 

immune responses. The myeloid C-type Lectin Receptors (CLRs) are one of the most 

prominent family of receptors involved in tailoring immunity after sensing dead cells. In 

this chapter, we will cover a diversity of signals arising from different forms of cell death 

and how they are recognized by myeloid CLRs. We will also explore how myeloid cells 

develop their sentinel function, exploring how some of these CLRs identify cell death 

and the type of responses triggered thereof. In particular, we will focus on DNGR-1 

(CLEC9A), MINCLE (CLEC4E), CLL-1 (CLEC12A), LOX-1 (OLR1), CD301 (CLEC10A) and DEC-

205 (LY75) as paradigmatic death-sensing CLRs expressed by myeloid cells. The 

molecular processes triggered after cell death recognition by myeloid CLRs contribute 

to the regulation of immune responses in pathologies associated to tissue damage, such 

as infection, autoimmunity and cancer. A better understanding of these processes may 

help to improve the current approaches for therapeutic intervention. 

 

KEYWORDS: C-type lectin receptors, cell death, macrophages, dendritic cells, myeloid.  
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1. Introduction 

Quoting the famous movie “Forrest Gump” in its 25th anniversary, “Momma 

always said dyin’ was a part of life”. Independently of the meaning of this quote in our 

daily life, this is an important assertion when we take a closer look at our bodies. Based 

on a cycle of cell death and regeneration, our cells are in a constant turnover under 

physiological conditions (Pellettieri and Alvarado 2007). This process is even more 

patent in pathological situations where massive tissue damage can be caused by both 

sterile or infectious insults. Immune cells populating all tissues constitute a sentinel 

network that surveys and reacts to cell death (Kroemer 2017).  

Pattern recognition receptors (PRRs) allow the sensing of conserved structures 

released or exposed during cell death (Shekarian et al. 2017). Importantly, cell death can 

be triggered through diverse programs, which deliver distinct signals. Sensing these 

signals by myeloid cells originates different immune responses depending on the PRR 

involved in the recognition. Among the PRRs, C-type lectin receptors (CLRs) exert a 

prominent function in death recognition (Sancho and Reis e Sousa 2013). Herein, we will 

review the type of signals generated during cell death and how these signals are 

produced depending on particular cell death programs. All this information will be 

integrated from an immune perspective, analyzing how myeloid cells recognize these 

signals through a panel of CLRs and their subsequent inflammatory outcomes. 

 

 

 

2. Molecular signatures associated to microorganisms and self-damage 
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Immune cells express different combinations of pattern recognition receptors 

(PRRs) that allow them to sense Pathogen-Associated Molecular Patterns (PAMPs), 

conserved molecular entities present in microorganisms (Janeway 1989). However, this 

does not fully explain the initiation of immunity in the apparent absence of infections. 

The danger theory defends that the immune system acts not only discriminating foreign 

molecules from the host’s own, but also by identifying evolutionarily-conserved 

endogenous molecular patterns associated with threats to homeostasis, that are 

exposed, released or produced in response to stress (Matzinger 2002). These Damage-

Associated Molecular Patterns (DAMPs) are self-molecules that can be detected by 

immune cells, inducing either immunity or promoting wound healing. The interplay 

between DAMPs and PAMPs and their PRRs may instruct immune responses.  

Cell death comprises a variety of modalities whereby cells cease to carry out their 

functions in an irreversible manner. Cell death generates DAMPs, and it is an excellent 

example of a situation where immune cells have to discriminate homeostatic death from 

menacing situations. The nature of released DAMPs upon cell death embraces a wide 

range of molecules that can be pre-formed or newly synthesized (Yatim et al. 2017). For 

instance, constitutive intracellular components released upon loss of membrane 

integrity, such as nucleic acids or cytoskeleton proteins. On the other hand, tissue injury 

can induce the specific modification of endogenous molecules, such as the glycation of 

ligands recognized by the Receptor for Advanced Glycation End-products (RAGE) or the 

production of cytokines, such as IL1a or IFN-a, which can act as immunomodulators 

(Roh and Sohn 2018).  

There is evidence that the nature of DAMPs is well conserved along evolution. 

For instance, the hydrophobic portions (hyppos) of different molecules are embedded 
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within biological membranes or hydrophobic cores in macromolecules, and their 

exposure can be linked to cell stress or death (Seong and Matzinger 2004). Another 

example of ancient DAMPs may be nucleic acids, which are usually restricted to the 

nuclear or cytoplasmic space, and their exposure can be indicative of cell death or viral 

infection. Mammalian cells are armed with an ample repertoire of receptors that detect 

nucleic acids, both at the intracellular and extracellular level (Roers et al. 2016). The 

detection of nucleic acids is also a common feature of invertebrate animals, yeasts and 

bacteria. Additionally, other properties of the microenvironment can condition the 

binding of defined DAMPs to those receptors (Rajamäki et al. 2013; Santoni et al. 2015). 

For instance, bacterial infections and tumors can acidify the cellular microenvironment, 

impacting sensing of DAMPs and signaling.  

 

 

3. Types of cell death 

Cell death occurs both under steady-state conditions (e.g. embryo development) 

and upon infection or sterile tissue damage. Cell death can be broadly categorized either 

as an accidental phenomenon (Accidental cell death – ACD) or as a regulated cellular 

process (Regulated cell death – RCD). This is actually the current classification system 

updated by the Nomenclature Committee on Cell Death (NCCD) (Galluzzi et al. 2015), 

which provides guidelines to define all aspects of cell death. According to the classic 

paradigm, ACD occurs only under pathological conditions and, alternatively, RCD mostly 

happens during homeostatic situations (Green et al. 2009). However, this paradigm has 

been challenged by the discovery of different forms of RCD. We next describe the 
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triggers, morphological features, underlying molecular mechanisms and relationship 

with immune responses of the main forms of cell death. 

  

3.1 Necrosis 

Defined as uncontrolled cell death following severe injury (or ACD), necrosis is 

accompanied with plasma membrane rupture. This results in the release of the 

intracellular content out to surrounding tissues, which may generate further damage 

(D’Arcy 2019). Under this view, the trigger and molecular mechanisms underlying 

necrosis are unspecific, and involve any form of chemical or physical insult that 

overwhelms control mechanisms and trigger this indiscriminate cell death. However, 

cells can die displaying necrotic features under a number of RCD processes such as 

necroptosis, pyroptosis or NETosis among others, which are driven by defined molecular 

mechanisms (Tang et al. 2019).  

Necrosis was classically considered an immunogenic process compared with 

RCD, due to the random exposition of cellular components/antigens that otherwise 

should be sheltered under the plasma membrane (Kroemer et al. 2009). However, this 

notion has been challenged by several observations where certain types of RCD can be 

immunogenic, while ACD is still considered a pro-inflammatory event associated with 

uncontrolled tissue damage. 

  

 

3.2 Apoptosis 
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Apoptosis represents the first described RCD program (Kerr et al. 1972). It is 

characterized by cell rounding, nuclear condensation, DNA fragmentation, membrane 

blebbing and the eventual formation of membrane-surrounded apoptotic bodies 

(Nagata 2018). Apoptosis can be triggered extrinsically by the engagement of membrane 

receptors such as death receptors (e.g. FAS, also known as CD95) or intrinsically by 

mitochondrial outer membrane permeabilization due to exposition to different toxic 

stimuli (irradiation, toxins, hypoxia) (Reed and Pellecchia 2005). Additionally, granzymes 

can trigger apoptosis in cells targeted by cytotoxic T and NK cells (Elmore 2007).  

Apoptosis is a finely regulated process based on the sequential activation of the 

Caspase family of cysteine proteases (McIlwain et al. 2013). These enzymes exist in 

steady-state as inactive zymogens. Stimuli that trigger apoptosis activate initiator 

caspases. Caspase-8 and -9 are prototypical initiator caspases of the extrinsic and 

intrinsic apoptosis, respectively. The proteolytic action of these caspases activates 

downstream executor caspases such as Caspase-3. Executor caspases cleave a wide 

range of proteins, giving rise to destruction of subcellular structures, thus compromising 

the cellular integrity (Galluzzi et al. 2016). 

The immune consequences of apoptosis have been classically considered as 

silent or anti-inflammatory, such as the induction of T cell tolerance to antigens 

associated to apoptotic cells (Steinman et al. 2000). In fact, the removal of apoptotic 

cells by phagocytosis, namely, efferocytosis, is considered an anti-inflammatory process 

(Morioka et al. 2019). However, certain types of caspase-mediated cell death induced 

upon anthracycline-based anti-tumor chemotherapies are immunogenic (Casares et al. 

2005; Obeid et al. 2007). In addition, apoptotic cells that are not efficiently cleared 
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undergo a process termed secondary necrosis defined as dissolution of the cell following 

apoptosis (Green et al. 2009). It is difficult to distinguish between secondary and primary 

necrosis, as both imply loss of plasma membrane integrity and are typically 

immunogenic due to the release of intracellular pro-inflammatory cell components (Bell 

et al. 2006). However, secondary necrotic cells have gone through various modifications 

during the process of apoptosis and consequently, molecules released during secondary 

necrosis may drive distinct immunologic responses (Sachet et al. 2017).  

Therefore, assigning a silent or tolerogenic role to apoptosis may not be 

accurate. A systematic characterization of the molecular mechanisms, the clearance of 

apoptotic bodies and their location may help to characterize the immunogenicity of 

specific apoptotic processes. Importantly, apoptosis and its dysregulation underlies both 

physiological and pathological processes, including cell homeostasis, tissue remodeling, 

organ transplantation and cancer (Linkermann et al. 2014; Singh et al. 2019). In addition, 

a number of pathologies have been linked to defective clearance of apoptotic cells 

(Morioka et al. 2019). 

 

3.3 Pyroptosis 

Pyroptosis represents an alternative Caspase-dependent RCD driven by the 

activation of the inflammasome, a cytosolic multiprotein complex responsible for the 

release of IL-1a/b and IL-18 (Fink et al. 2008; Tang et al. 2019). Pyroptosis is 

characterized by the formation of cell membrane pores, leading to membrane rupture 

and release of cytosolic contents to the extracellular environment (Wang et al. 2019). 

Pyroptosis can be triggered by many different PAMPs (e.g. bacterial peptidoglycans, 
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viral dsRNA) and DAMPs (ATP, elevated intracellular ROS) through the canonical 

Caspase-1 pathway (Liu and Lieberman 2017) or after direct recognition of LPS by 

Caspase-4/5 in humans or Caspase-11 in mice, in a non-canonical pathway (Shi et al. 

2014). In addition, pyroptosis can be activated by alternative caspases such as Caspase-

8 during Yersinia infection (Orning et al. 2018) or Caspase-3 in response to 

chemotherapy in certain cancer cells (Wang et al. 2017).  

The final step for the development of pyroptosis involves the cleavage of 

Gasdermins, a family of proteins that comprises functionally diverse enzymes with pore-

forming potential. In particular, Gasdermin-D (GSDMD) is cleaved in most models of 

pyroptosis (Shi et al. 2015). GSDMD is a proteolytic substrate of Caspases-1/4/5/8/11 

and its cleavage releases the N-terminal effector domain from the inhibitory domain. 

The N-terminal domain of GSDMD oligomerizes in the cell membrane and forms 

cytotoxic pores, through which caspase-substrates of small size, such as IL-1β/-18 and 

the alarmin IL-1a are spread to the extracellular milieu. The accumulation of  eventually 

leads to membrane rupture and, releasing the entire cellular content (Feng et al. 2018). 

Additionally, chemotherapy drugs induce pyroptosis by a similar mechanism through 

Caspase-3 cleavage of Gasdermin-E (Wang et al. 2017). 

Due to the involvement of pro-inflammatory cytokines IL-1a/-1ß/-18 and the 

eventual release of the intracellular content, pyroptosis is a highly inflammatory form 

of cell death (Tang et al. 2019). The main function of pyroptosis is the defense and rapid 

clearance of bacterial and viral infections (Doitsh et al. 2014; Robinson et al. 2019). 

However, persistent inflammasome activation can produce excessive and chronic 
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inflammation, eventually contributing to metabolic disorders, autoinflammatory 

diseases and cancer (Davis et al. 2011). 

 

3.4 Necroptosis 

Necroptosis is a form of necrotic RCD sharing morphological features to necrosis, 

with the rupture of the plasma membrane as the main characteristic (Pasparakis and 

Vandenabeele 2015). It can be triggered by multiple inflammatory stimuli, both sterile 

and infectious (Tang et al. 2019). Of note, molecules that induce apoptosis, such as TRAIL 

or Fas Ligand (FasL), can also ignite necroptosis when apoptosis is chemically inhibited 

(Vercammen et al. 1998). 

Mechanistically, necroptosis relies on the phosphorylation of mixed lineage 

kinase domain-like pseudokinase (MLKL) by the receptor-interacting serine/threonine 

kinase 3 (RIPK3) conforming the critical RIPK3-MLKL axis for necroptosis induction (Sun 

et al. 2012). Phosphorylated MLKL can bind phosphatidylinositol phosphates present in 

the inner face of the plasma membrane (Dondelinger et al. 2014). Once translocated to 

the membrane, MLKL inserts into it and multimerizes with the final consequence of 

membrane permeabilization (Galluzzi et al. 2017).  

Current findings support that necroptosis is an immunogenic cell death 

important for the activation of innate and adaptive immunity. For instance, RIPK3-

deficient mice are highly sensitive to viral infections (Cho et al. 2009; Huang et al. 2015) 

and the presence of RIPK3 in tumor cells is required for eliciting cytotoxic antitumor 

responses (Yatim et al. 2015). In fact, necroptosis in tumor cells promotes anti-tumor 

immunogenicity. Thus, Ripk3 expression in colorectal carcinoma patients is reduced 



 14 

compared with adjacent healthy tissue and high Ripk3 expression constitutes an 

independent good-prognostic factor (Feng et al. 2015). In line with these findings, the 

oncogenes BRAF and AXL drive the loss of Ripk3 expression (Najafov et al. 2018). 

Consequently, tumor cells dampen necroptosis to become poorly immunogenic and 

hence escape immunosurveillance; therefore promoting necroptosis in cancer cells has 

a great potential as adjuvant for antitumor therapy (Cho 2018). Necroptosis has not only 

been involved in infections and malignancies, but it is also implicated in a variety of 

pathologies such as myocardial infarction and stroke, atherosclerosis or inflammatory 

bowel disease (Linkermann and Green 2014). 

 

3.5 NETosis 

 Netosis is an RCD process driven by Neutrophil Extracellular Traps (NETs) 

extrusion. Despite its name, coined after its first characterization (Brinkmann et al. 

2004), NETs are not only produced by neutrophils but by other granulocytes as well 

(Araźna et al. 2015). NETs are web-like DNA structures formed after chromatin 

decondensation and release to the extracellular environment following plasma 

membrane rupture; in addition, several proteins adhere to these DNA-based nets, 

including histones and components of cytoplasmic granules (Delgado-Rizo et al. 2017). 

Interestingly, NETosis has also been described without involving cell death, a process 

termed vital-Netosis (Timp et al. 2015). 

The molecular mechanisms implicated in the induction of NETosis are quite 

diverse (Tang et al. 2019), with notorious differences between cell death-based NETosis, 

vital-NETosis or even NET formation through release of mitochondrial DNA (Yousefi et 
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al. 2019). In fact, the pyroptosis driver GSDMD (Sollberger et al. 2018) and pyroptosis-

related IL-1b (Mitroulis et al. 2011) have been involved in triggering NETosis, indicating 

the complexity of this process. However, production of Reactive Oxygen Species (ROS) 

is of capital relevance for triggering most forms of the NETotic processes (Araźna et al. 

2015).  

NETosis is triggered in response to infection but also in sterile conditions, such 

as autoimmune disorders, ischemia-reperfusion injury and cancer (Branzk and 

Papayannopoulos 2013). In fact, the diversity of the molecular mechanisms involved in 

NETosis initiation is associated with the plethora of stimuli that ignite this process. 

A main function of NETosis is to content the spread of infections by trapping 

pathogenic microorganisms (Mesa and Vasquez 2013), thus contributing to control the 

infection-mediated inflammation. However, in the development of this process, DAMPs 

are also released, which can be sensed by surrounding innate immune cells, triggering 

further inflammation. Due to this feed-back loop, NETosis becomes a highly 

inflammatory process (Tang et al. 2019), which has clinical implications in autoimmune 

diseases (Lee et al. 2017b). 

 

3.6 Relevance of oxidative stress in cell death 

In previous sections, we have explored in detail forms of PCD with well-described 

pathophysiological roles such as apoptosis, pyroptosis, necroptosis and NETosis 

(Jorgensen et al. 2017). Nevertheless, there are some other forms of cell death whose 

importance needs to be studied in further detail (Tang et al. 2019). However, a common 

feature for all the cell death programs is that, to some extent, the oxidative stress 
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contributes to their triggering. This oxidative stress results from the imbalance between 

ROS production and the antioxidant capacity of the cell (Ghosh et al. 2018). One of the 

main consequences of an excessive ROS presence in a cell is the peroxidation of lipids, 

main components of membranes which are indispensable for maintaining the structure 

and the functionality of the cell (Gaschler and Stockwell 2017). Lipid peroxidation drives 

different forms of cell death, such as ferroptosis (Dixon et al. 2012), pyroptosis (Kang et 

al. 2018), necroptosis (Canli et al. 2016) or NETosis (Palladino et al. 2018), among others. 

As a consequence of all these death processes, cell rupture occurs, what would 

drive the activation of the immune system. However, ROS activity can regulate immune 

activation by altering the structure of otherwise pro-inflammatory components. This is 

the case for the High Mobility Group B1 (HMGB1) protein. HMGB1 is a nuclear 

component that acts as a prototypic DAMP that can be recognized by TLR4, triggering 

inflammation (Andersson and Tracey 2011). However, once oxidized by mitochondrial 

ROS during apoptosis, HMGB1 induces immunological tolerance (Kazama et al. 2008). 

Therefore, each specific cell death-associated situation needs to be deeply characterized 

in order to know its immunological impact.  

 

4. C-type lectin receptors in myeloid cells 

The myeloid lineage comprises a group of cells that derive from common myeloid 

progenitors in the bone marrow. Common myeloid progenitors give rise to diverse cell 

types, including mast cells, basophils, neutrophils, eosinophils, monocytes, 

macrophages and DCs, which belong to the innate immune system, and erythrocytes 

and megakaryocytes, which can contribute to the immune response, but have a 
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different primary function (Weiskopf et al. 2016). Immune myeloid cells comprise the 

main core (or classical core) of the innate immune system, characterized by their 

readiness to respond to insults and for not being antigen-specific. Among myeloid cells, 

DCs and macrophages continuously surveil tissues, having a dual role in the modulation 

of both innate and adaptive immunity. They are equipped with a diverse arsenal of PRRs 

composed by Toll-Like Receptors (TLRs), Nucleotide-binding domain, Leucine-Rich 

repeat-containing (NOD)-like receptors (NLRs), C-type lectin receptors (CLRs), AIM2-like 

receptors (ALRs) and RIG-I-like receptors (RLRs) (Brubaker et al. 2015). These receptors 

allow to specifically detect signals from their microenvironment, acting as central hubs 

that integrate information about environmental cues and possible threats. Thus, 

myeloid cells orchestrate immune function, collaborating in tissue homeostasis or 

healing, or instructing both innate and adaptive immunity.  

The family of CLRs are of prominent relevance in sensing cell death by myeloid 

cells (Sancho and Reis e Sousa 2013). CLRs are characterized for bearing C-type lectin-

like domains (CTLD), which in many cases includes a carbohydrate recognition domain 

(CDR). Their domain architecture is the base for grouping CLRs in up to 17 groups 

(Zelensky and Gready 2005). The CDR domain allows CLRs to recognize a wide range of 

glycans exposed on self and non-self-ligands (Iborra and Sancho 2014). In addition, we 

proposed a classification of myeloid CLRs based on their intracellular signaling motifs, in 

an attempt to classify this complex receptor family based on functional criteria (Sancho 

and Reis e Sousa 2012). Thus, myeloid CLRs can be broadly classified as Immunoreceptor 

Tyrosine-based Activating Motif (ITAM)-coupled CLRs, hemi-ITAM-(hemITAM)-bearing 

CLRs, Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM)-containing CLRs, and a 

group of CLRs lacking typical signaling motifs (del Fresno et al. 2018). In here, we will 
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explore some selected myeloid CLRs that sense cell death, modulating inflammatory 

responses. The selection of these CLRs has not been done based on structural criteria, 

but on their paradigmatic roles in the detection of tissue damage by myeloid cells.  

 

4.1. DNGR-1 (CLEC9A) 

Dendritic cell Natural killer lectin Group Receptor-1 (DNGR-1, CLEC9A) is a CLR 

encoded in chromosomes 12 in humans and 6 in mice (Sancho et al. 2008; Huysamen et 

al. 2008). The expression pattern of DNGR-1 is very restricted to the dendritic cell lineage 

and, more specifically, to type I conventional DCs and common DC progenitors (Sancho 

et al. 2008; Schraml et al. 2013). Additionally, DNGR-1 is also expressed by mouse but 

not human, plasmacytoid dendritic cells (Sancho et al. 2008; Zilionis et al. 2019).  

Structurally, DNGR-1 is a transmembrane protein that belongs to the group V of 

CLRs. These CLRs show an NK cell receptor-like architecture, having no CRD motifs and 

whose binding capacity to their ligands is calcium-independent (Sancho and Reis e Sousa 

2012). In its intracellular region, DNGR-1 features a hemITAM signaling module, that can 

signal through the Spleen tyrosine kinase (SYK) (Sancho et al. 2009; Zelenay et al. 2012). 

DNGR-1 acts as a homodimer through a cysteine in its neck region. Under conditions of 

low pH or ionic strength, the neck region of DNGR-1 undergoes changes in its tertiary 

structure, driving resistance to disassembly of the homodimer (Hanč et al. 2016). 

The only known ligand for DNGR-1 is filamentous actin (F-actin), a major 

component of the cellular cytoskeleton that can be accessible to immune cells upon loss 

of plasma membrane integrity, as occurs in different forms of cell death (Ahrens et al. 

2012; Zhang et al. 2012). The docking site for DNGR-1 homodimers in F-actin involved 
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two contiguous monomers from one protofilament and the adjoining one from the 

other (Hanč et al. 2015). Moreover, myosin II helps stabilizing the interaction between 

F-actin and DNGR-1 (Schulz et al. 2018). 

Upon recognition of F-actin, SYK is recruited to the hemITAM of DNGR-1. DNGR-

1/SYK signaling promotes cross-presentation of dead cell-associated antigens in MHC-I, 

contributing to priming of CD8+ T cells. However, and contrary to Dectin-1, the 

recruitment of SYK to DNGR-1 hemITAM does not result in NF-kB activation or increased 

production of inflammatory cytokines (Zelenay et al. 2012). Also, DNGR-1 does not act 

as a scavenger receptor promoting the uptake of dead cells (Sancho et al. 2009). Instead, 

DNGR-1 signaling promotes the diversion of phagocytic cargo into non-acidic, non-

lysosomal compartments, which prevents antigen degradation and promotes cross-

presentation (Zelenay et al. 2012; Iborra et al. 2012). This phenomenon participates in 

shaping the repertoire of primary antiviral immune responses, without affecting the 

global effector response (Zelenay et al. 2012; Iborra et al. 2012). However, cDC1s and 

crosspriming of anti-viral CD8+ T cells through DNGR-1 contributes to the generation of 

tissue-resident memory CD8+ T cells specific for the viral threat (Iborra et al. 2016b).  

Moreover, DNGR-1 can additionally limit inflammation in situations of tissue 

damage, a phenomenon termed disease tolerance (Soares et al. 2017). Recently, cDC1s 

have been involved in the recruitment of neutrophils to inflammation foci (Janela et al. 

2019). In different models of tissue-specific injury, such as acute pancreatitis induced by 

caerulein and kidney aggression during systemic candidiasis, sensing of tissue damage 

through DNGR-1 in cDC1s restricts immunopathology (Del Fresno et al. 2018). 

Mechanistically, engagement of F-actin by DNGR-1 activates the phosphatase SHP-1, 
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which restrains NFkB activation by heterologous receptors and subsequent expression 

of proinflammatory mediators, such as TNF and CXCL2/MIP-2a that contribute to 

immunopathology (Del Fresno et al. 2018).  

To date, whether SYK and SHP-1 signaling occur simultaneously or alternatively 

remains obscure. Intriguingly, the inhibitory ITAM configuration by which SHP-1 binds 

to the hypophosphorylated ITAM requires the transient binding and activation of Syk to 

the ITAM (Mkaddem et al. 2014; Iborra et al. 2016a).  The conditions that determine the 

overall outcome of F-actin recognition in DNGR-1 signaling remain unknown. Here, the 

ionic composition of the microenvironment, which may fine-tune the conformation of 

DNGR-1 homodimers (Hanč et al. 2016), may be an important cofactor, providing 

versatility to DNGR-1 signaling. In this context, F-Actin constitutes the DAMP recognized 

by DNGR-1, while the environmental ionic strength would represent a modulating 

factor. 

Considering the lack of activating signaling after DNGR-1 engagement and its 

regulatory role in heterologous pathways, the net inflammatory outcome after death 

recognition by DNGR-1 may be regulatory. However, surrounding signals to the DNGR-

1-mediated dead cell sensing, such as adjuvants in the context of infection or 

vaccination, may switch these responses towards a pro-inflammatory result, considering 

the role of this receptor in antigen cross-priming. 

 

4.2. MINCLE (CLEC4E) 

Macrophage INducible C-type LEctin (MINCLE, CLEC4E) is a CLR encoded in 

chromosome 12 in humans and in chromosome 6 in mice. Mincle is expressed by 
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neutrophils (Lee et al. 2012), macrophages (Yamasaki et al. 2008), DCs (Martínez-López 

et al. 2019) and monocytes (http://www.immgen.com; (Heng et al. 2008)). 

From the structural point of view, Mincle is a transmembrane protein that 

belongs to the group II of CLRs, which comprises CLRs with a single CRD relying in calcium 

for their ligand binding (Sancho and Reis e Sousa 2012). Mincle forms heterodimers with 

Macrophage C-type Lectin (MCL, CLEC4D), with which it shares a very similar structure 

(Furukawa et al. 2013; Lobato-Pascual et al. 2013). Mincle coordinates two Ca2+ ions that 

are responsible for the recognition of sugar moieties in its ligands (Furukawa et al. 2013). 

Neighboring its sugar binding sites, Mincle features a surface hydrophobic groove that 

binds long fatty acids (Feinberg et al. 2013; Decout et al. 2017). At the intracellular 

region, Mincle presents a short domain that does not contain any tyrosine-based 

regulatory motif. Instead, Mincle bears an arginine residue in its transmembrane region 

that mediates association with immunoreceptor tyrosine-based activation motif (ITAM)-

containing FcRg chain (Yamasaki et al. 2008; Ishikawa et al. 2009, 2013). 

Mincle was identified as the long-sought receptor for chord factor, a 

proinflammatory molecule from Mycobacterium spp (Ishikawa et al. 2009; Schoenen et 

al. 2010). Since then, multiple microbial components have been shown to engage and 

activate Mincle, driving activation of myeloid cells (Lu et al. 2018). For instance, it 

promotes protective immune responses against bacterial sepsis after cecal ligation (Lee 

et al. 2017a) and also drives the activation of macrophages upon sensing Malassezia spp 

(Yamasaki et al. 2009), an infectious skin fungus whose surface glycolipids were defined 

as the specific Mincle ligand (Ishikawa et al. 2013). Furthermore, recognition of gut 

microbiota through Mincle contributes to reinforce the immune response in the gut 



 22 

barrier (Martínez-López et al. 2019). In all these cases, engagement of Mincle induces 

the phosphorylation of SYK and downstream signaling through CARD9 and NFkB, leading 

to increased production of proinflammatory mediators, such as CXCL2/MIP-2a and TNF, 

promoting the recruitment of neutrophils to inflammation foci (Werninghaus et al. 

2009). 

However, Mincle also binds the endogenous Spliceosome-Associated Protein 

130 (SAP130) (Yamasaki et al. 2008). This protein is part of the U2 Small Nuclear 

RibonucleoProtein (snRNP) complex, implicated in removal introns, and with a nuclear 

localization under steady-state conditions (Kiss 2004). The recognition of SAP130 by 

Mincle has been characterized in different settings. Upon SAP130 ligation, Mincle 

induces SYK-dependent production of the proinflammatory mediators TNF and 

CXCL2/MIP-2a. In irradiated thymi, Mincle promotes the production of CXCL2/MIP-2a 

in macrophages, driving inflammation (Yamasaki et al. 2008). In more physiologically 

relevant scenarios, the proinflammatory signals triggered by Mincle can be observed in 

mouse models of alcoholic liver injury. During alcoholic liver disease, microbiota-derived 

LPS can be detected by liver macrophages (Parlesak et al. 2000). Sensing of LPS induces 

the expression of Mincle in macrophages in an Interleukin-1 receptor-associated kinase 

M (IRAK-M)-dependent manner (Zhou et al. 2016). Mincle can sense endogenous 

SAP130 in alcoholic livers, amplifying SYK- and inflammasome-mediated IL1b production 

(Zhou et al. 2016; Kim et al. 2018). Thus, Mincle aggravates alcoholic liver disease, 

whereas Mincle-deficient mice display reduced neutrophilia, steatosis and fibrosis in 

their livers (Zhou et al. 2016; Kim et al. 2018). 



 23 

In a tumor context, pancreatic ductal adenocarcinomas display stable expression 

of the necroptotic components RIP1 and RIP3. The genetic deletion of RIP3 or the 

chemical inhibition of RIP1 protected against tumor development, what was associated 

to an immunogenic infiltrate. Mechanistically, pancreatic adenocarcinoma cells 

exploited necroptosis induction to promote their growth by promoting the recruitment 

of tumor-associated macrophages and myeloid-derived suppressor cells (MDSCs) in a 

CXCL1/KC-dependent manner, limiting the efficacy of chemotherapeutic agents. But 

additionally, necroptosis of pancreatic ductal adenocarcinoma cells also promotes the 

release of SAP130, with a parallel Mincle upregulation in tumor-infiltrating myeloid cells. 

Interestingly, Mincle-deficient mice phenocopied RIP3-decifient mice and were also 

protected against oncogenesis (Seifert et al. 2016). Furthermore, administration of 

trehalose dimycolate, a synthetic analog of the Mycobacterium tuberculosis ligand for 

Mincle, accelerates the growth of both RIP3-competent and -deficient tumors, 

suggesting that both SAP130 and the bacterial ligands for Mincle induce similar signaling 

and immune responses (Seifert et al. 2016).  

Recently, two new endogenous ligands have been identified for Mincle, b-

glucosylceramide (Nagata et al. 2017) and cholesterol sulfate (Kostarnoy et al. 2017). b-

glucosylceramide is a ubiquitous metabolite released upon cell death. b-

glucosylceramide induces the activation of DCs, promoting the production of 

proinflammatory mediators, such as TNF and CXCL2/MIP-2a. Thus, in a mouse model, 

thymic irradiation or mice deficient for the enzyme in charge of b-glucosylceramide 

degradation in the hematopoietic compartment show an increased recruitment of 

neutrophils to irradiated thymi, resulting in increased destruction of the organ. Of note, 

b-glucosylceramide can also induce the expression of costimulatory molecules in DCs in 
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vitro, and boosts priming of adaptive immune responses (Nagata et al. 2017). Similarly, 

Mincle can sense cholesterol sulfate, an abundant molecule in barrier epithelia. Sensing 

of cholesterol sulfate by bone marrow DCs promotes their maturation and the 

production of proinflammatory mediators such as IL1a, IL1b, KC, CCL3/MIP1a and 

CCL4/MIP1b. This is important in models of contact dermatitis, where Mincle plays a 

detrimental role, aggravating inflammation and increasing tissue abnormalities 

(Kostarnoy et al. 2017). 

The discovery of b-glucosylceramide and cholesterol sulfate as ligands for Mincle 

with proinflammatory properties similar to SAP130 makes it difficult to discriminate 

their individual contribution to the inflammatory response induced by Mincle during 

tissue injury, as SAP130 is fundamental for the cell machinery and the others are widely 

produced metabolites. Overall, it could be concluded that cell death recognition by 

Mincle generates pro-inflammatory responses. Whether these responses eventually 

regulate inflammation by a third-party component, as described in the pancreatic 

adenocarcinoma context, illustrate the complexity of the outcome after cell death 

recognition. In this regard, sensing of Leishmania through Mincle can induce SHP-1 

activation through an inhibitory ITAM configuration, restricting DC activation (Iborra et 

al. 2016a). Whether any endogenous ligand is capable of inducing Mincle signaling 

through an inhibitory ITAM configuration remains unknown. In any case, Mincle is a 

great example of a receptor that identifies hyppos as danger cues and modulates 

immunity accordingly. 

 

4.3. CLL-1 (CLEC12A) 
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CLEC12A is a receptor also known as MICL, CD371, KLRL1 or DCAL-2, but based 

on the usage frequency of these names, we proposed the consensus alias CLL-1 together 

with its gene name, CLEC12A (del Fresno et al. 2019). It is codified in chromosome 12 in 

humans and chromosome 6 in mice. CLEC12A is expressed by human monocytes, 

macrophages, polymorphonuclear cells (Marshall et al. 2004) and DCs (Han et al. 2004; 

Gurka et al. 2015), while in the mouse, it is expressed by both CD8+ and CD8– spleen DCs, 

pDCs, B cells, thymic DN, DP and CD8+ T cells, most of the granulocytes and myeloid cells, 

along with bone marrow NK cells (Kasahara and Clark 2012) (http://www.immgen.com; 

(Heng et al. 2008)). CLEC12A surface expression is downregulated in myeloid cells upon 

activation, both in humans (Marshall et al. 2006) and mice (Pyz et al. 2008), although 

receptor levels were increased upon experimental autoimmune encephalomyelitis 

(EAE), a mouse model for multiple sclerosis (MS) (Sagar et al. 2017), suggesting a 

complex implication of CLEC12A in the control of myeloid activation during 

inflammation. 

Structurally, CLEC12A is a transmembrane protein that belongs to the group V of 

CLRs (Sancho and Reis e Sousa 2012). It bears an ITIM motif in its intracellular domain 

that couples to the phosphatases SHP-1 and SHP-2, responsible for the regulatory role 

of CLEC12A upon inflammation (Marshall et al. 2004). 

Early studies indicated that CLEC12A recognizes a non-microbial endogenous 

ligand (Pyz et al. 2008). Although it is now known that the receptor also senses 

Plasmodium-derived hemozoin (Raulf et al. 2019), CLEC12A is a well-established 

receptor for dead cells that recognizes monosodium urate (MSU) crystals and delivers 

regulatory signals. Consequently, Clec12a-deficient mice show exacerbated 
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inflammatory responses when challenged with MSU, necrotic cells or sublethal thymic 

irradiation (Neumann et al. 2014). In this line, CLEC12A-lacking mice are more sensitive 

to collagen antibody-induced arthritis (CAIA), which was reproduced by administering 

CLEC12A-blocking antibodies (Redelinghuys et al. 2016). Indeed, genetic variants of 

CLEC12A associate with rheumatoid arthritis in humans (Michou et al. 2012). These data 

support the regulatory role of CLEC12A in inflammation. 

However, there are a number of reports showing a pro-inflammatory role for 

CLEC12A. Indeed, both antibody-based targeting and genetic deletion of CLEC12A, 

protect mice from EAE development, where CLEC12A facilitates the binding and 

transmigration of DCs across the blood-brain barrier (Sagar et al. 2017). Considering that 

CLEC12A recognizes MSU from dying cells (Neumann et al. 2014) and that serum uric 

acid reverses EAE progression (Scott et al. 2002), the maintenance of high uric acid levels 

upon CLEC12A-deficient conditions was argued as an explanation for the beneficial 

effect of its loss (Sagar et al. 2017). In any case, the distinct underlying mechanisms 

triggering different autoimmunity models (Lyons et al. 1999) may explain these 

apparently controversial results. Thus, during EAE, CLEC12A could show a “hijacking” 

effect over uric acid plus its contribution to DC infiltration, while for CAIA, CLEC12A may 

act in myeloid cells as an intrinsic regulator of the inflammatory response after sensing 

tissue damage. In addition, MSU recognition by CLEC12A amplifies cytosolic RNA-

mediated IFN-I production, and therefore, Clec12a-deficient mice are sensitive to 

lymphocytic choriomeningitis virus (LCMV) infection. In this case, the molecular 

mechanism relies on Src kinase activation downstream CLEC12A, what promotes TBK1-

IRF3 signaling and IFN-I production (Li et al. 2019).  
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Interestingly, CLEC12A expression is one of the most differentially upregulated 

surface markers in leukemic stem cells (Daga et al. 2019). Its combined expression with 

some other markers has been proposed as an efficient tool for detecting minimal 

residual disease in acute myeloid leukemia (AML) and, high CLEC12A levels along with 

CD123 are a strong prognostic marker for leukemia relapse (Roug et al. 2014). In fact, 

CLEC12A has been proposed as a therapeutic target in human AML (Williams et al. 2019), 

with successful antibody-drug conjugate (Jiang et al. 2018), bispecific antibody (van Loo 

et al. 2019) or CAR-T cell (Laborda et al. 2017) strategies. The relevance of cell death 

recognition in this context is a matter of debate. However, it is tempting to speculate 

that CLEC12A expression by tumor cells may help them to boost an anti-inflammatory 

environment after the recognition of surrounding dead cells, facilitating thus the scape 

from immunosurveillance. Overall, these data indicate that the sensing of tissue damage 

by CLEC12A can give rise to both pro-inflammatory and regulatory responses. 

 

4.4. LOX-1 (OLR1) 

The CLR LOX-1 is encoded by the OLR1 gene and it is also known as LOXIN (del 

Fresno et al. 2019). It is codified in chromosome 12 in humans and chromosome 6 in 

mice. LOX-1 was first described as an endothelial receptor (Sawamura et al. 1997), but 

it is also expressed by human macrophages (Yoshida et al. 1998), monocytes (Draude et 

al. 1999) and DCs (Nickel et al. 2009), with a similar expression pattern in the mouse, 

where it is also expressed by bone marrow neutrophils (http://www.immgen.org; (Heng 

et al. 2008)). LOX-1 expression is low under steady-state conditions, but diverse 

inflammatory stimuli induce the surface expression of this CLR (Kattoor et al. 2019). 
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From the structural point of view, similarly to CLEC12A, LOX-1 is a 

transmembrane protein that belong to the group V of CLRs (Sancho and Reis e Sousa 

2012). It does not bear any distinguishable ITAM or ITIM motif in its intracellular domain, 

what it is usually associated to CLRs with endocytic capacity that mediate antigen 

capture for further processing and presentation to T cells (Geijtenbeek and Gringhuis 

2009). Notably, the lack of a defined intracellular module facilitates the involvement of 

this type of CLRs in flexible signaling pathways triggered by themselves or heterologous 

receptors (del Fresno et al. 2018). 

The first described ligand of LOX-1 are oxidized-low density lipoproteins (LDLs) 

(oxLDL) (Sawamura et al. 1997). The involvement of this receptor in atherosclerosis was 

uncovered in atherosclerosis-prone mice (LDLR–/–), which showed reduced pathology 

when crossed with Olr1-deficient mice, indicating that LOX-1 is pro-atherogenic (Mehta 

et al. 2007). OxLDL internalization after recognition by LOX-1 is a key event in the 

development of coronary artery disease, with LOX-1 genetic variants associated to 

increased risk (Tian et al. 2019).  In fact, a serum-soluble cleaved form of LOX-1 is used 

as a diagnostic and prognostic tool in this pathology (Tian et al. 2019). 

In addition to oxLDL, LOX-1 recognizes other endogenous ligands such as 

modified lipoproteins, activated platelets, heat shock proteins (HSP) (Huysamen and 

Brown 2009) and apoptotic cells (Oka et al. 1998). The recognition of apoptotic cells may 

occur by two alternative mechanisms. On the one side, LOX-1 directly recognizes 

phosphatidylserine on the membrane of cells undergoing apoptosis (Murphy et al. 

2006). On the other side, the recognition and internalization of apoptotic cells may occur 

through LOX-1 binding to HSPs. HSPs are cytoplasmic compounds identified as stress-
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responsive proteins, which are also translocated to the cell surface during different 

processes of cell death (Goh et al. 2011). In myeloid cells, LOX-1 binds different members 

of this family such as HSP-60 (Liu et al. 2019) or HSP-70 (Parlato et al. 2010). In this sense, 

HSPs facilitate the uptake of dying cells (Zhu et al. 2016). The functional consequences 

of HSP-60 recognition by LOX-1 is the activation of macrophages resulting in cytokine 

production (Liu et al. 2019) and the induction of antigen presentation in DCs after 

binding HSP-70 (Delneste et al. 2002), being the HSP-70-LOX1 interaction an underlying 

mechanism for the uptake of apoptotic cells (Parlato et al. 2010). 

LOX-1 expression is upregulated in circulating and tumor-infiltrating neutrophils, 

while its expression is negligible in healthy volunteers. Interestingly, LOX-1+ neutrophils 

show transcriptional and suppressive characteristics of myeloid-derived suppressor cells 

(Condamine et al. 2016). Indeed, the expression of LOX-1 on polymorphonuclear cells 

defines highly immunosuppressive cells that correlates with recurrence of glioblastoma 

and disease progression (Chai et al. 2019). LOX-1-mediated delivery of 

immunosuppressive signals in a cell death-rich environment such as a tumor could be a 

strategy to escape from immunosurveillance. In any case, these data suggest that LOX-

1 could be a marker for human MDSCs. The regulatory role for LOX-1 observed in these 

settings and whether it is neutrophil-specific deserves further investigation. 

LOX-1-deficient mice show improved survival in a Cecal Ligation and Puncture 

(CLP) sepsis model. This phenotype is accompanied by a dampened systemic production 

of pro-inflammatory cytokines, while neutrophil infiltration into the peritoneum was 

boosted, favoring bacterial clearance (Wu et al. 2011). In this model LOX-1 plays and 

intriguing role, promoting inflammatory responses but suppressing neutrophil 
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mobilization, although indirect effects cannot be ruled out. LOX-1 has also been 

described as a surface receptor for both Gram-positive and Gram-negative bacteria 

(Shimaoka et al. 2001), where a bacterial HSP-60 homolog could be the specific LOX-1 

ligand (Zhu et al. 2013). Therefore, it is difficult to interpret in this context whether the 

observed effects are dependent of bacteria or cell death recognition.  

In summary, the immune balance after cell death sensing by LOX-1 could be 

described as pro-inflammatory due to its repercussion in myeloid activation and antigen 

presentation. However, although the implication of cell death recognition is not fully 

characterized in LOX-1+ intratumor MDSCs or after infection, the triggering of LOX-1-

mediated immunosuppressive signals cannot be discarded. An interesting hypothesis 

would be that different LOX-1 ligands trigger diverse inflammatory responses, either 

regulatory or pro-inflammatory. 

 

4.5. CD301 (CLEC10A) 

CLEC10A can be also named as CD301, CD301a, MGL-1, HML or CLECSF14 but 

based on their usage frequency, we proposed the consensus alias CD301 together with 

its gene name, CLEC10A (del Fresno et al. 2019). It is encoded in chromosome 17 in 

humans. In mice there are two homologous genes, Clec10a/CD301 and Mgl2/CD301b 

(Tsuiji 2003), both encoded in chromosome 11. CLEC10A is expressed by human 

monocyte-derived DCs (Higashi et al. 2002), CD1c+ DCs (Heger et al. 2018) and 

macrophages, specifically in alternative activated macrophages (Raes et al. 2005), with 

a similar expression pattern in mouse DCs and macrophages (http://www.immgen.org; 

(Heng et al. 2008)). CLEC10A surface expression is downregulated upon DC maturation 
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while anti-inflammatory agents such as dexamethasone enhances CLEC10A expression 

both in macrophages and DCs (van Vliet et al. 2006). Structurally, CLEC10A is a 

transmembrane protein that belong to the group II of CLRs (Sancho and Reis e Sousa 

2012). Similar to LOX-1, it does not bear any distinguishable ITAM or ITIM motif in its 

intracellular domain. 

CLEC10A recognizes N-Acetylgalactosamine (GalNAc) residues present in 

glycoproteins and glycosphingolipids, which can be found in the surface of helminth 

parasites (van Vliet et al. 2005), tumors (Mortezai et al. 2013) and apoptotic cells 

(Malagolini et al. 2009). CLEC10A mediates the internalization of these cells and diverts 

the cargo to the phagolysosomal route (van Vliet et al. 2007). 

Clec10a-deficient mice were generated to explore the role of this CLR in tissue 

homeostasis. The only noticeable defect of Clec10a-deficient mice is a mild increase in 

blood erythrocytes, which is caused by an impaired scavenging of aged erythrocytes by 

macrophages (Onami et al. 2002). However, the implication of CLEC10A in the sensing 

and removal of apoptotic cells is evident upon X-ray irradiation of pregnant mice, where 

massive apoptosis is induced in the developing embryos. Here, the number of pups was 

reduced in the absence of Clec10a, with a defective clearance of apoptotic cells in tissues 

suffering a vast apoptosis generation, such as the neural tube (Yuita et al. 2005). 

In the same line, the lack of Clec10a originated evident phenotypes under 

pathological conditions running in the presence of massive cell death. This is the case 

for multiple sclerosis (MS). Clec10a expression is upregulated in MS lesions at the brain, 

particularly in P2Y12R+ M2-polarized microglia (Ilarregui et al. 2019). In accordance with 

an immunosuppressive function for CD301 in this model, Clec10a–/– mice display a 
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worsened outcome during EAE development at the resolution phase of the pathology 

(Ilarregui et al. 2019). Despite ex vivo experiments showed that CLEC10A induces the 

apoptosis of T cells, whether a defect in apoptotic cell removal accounts for the 

observed phenotype cannot be ruled out. Similarly, Clec10a-deficient mice are more 

susceptible to pulmonary infections by Klebsiella pneumoniae due to a severe lung 

immunopathology, despite a comparable bacterial burden (Jondle et al. 2016). In this 

case, also, the phenotype could rely in a defective clearance of dead cells due to the lack 

of CLEC10A. 

Overall, CLEC10A acts as a regulatory CLR after sensing apoptotic events. This is 

in line with the anti-inflammatory signals generated by efferocytosis, i.e. the engulfment 

and clearance of apoptotic cells (Morioka et al. 2019). In fact, CLEC10A also regulates 

inflammation by recognizing stimuli different from apoptotic cells, such as commensal 

bacteria during colitis (Saba et al. 2009) or CD45 on the surface of effector T cells (van 

Vliet et al. 2006).  

 

4.6. DEC-205 (LY75) 

DEC-205 receptor is also known as Gp200-MR6 or CD205, but after analyzing the 

usage frequency of these names, we proposed the consensus alias DEC-205 together 

with its gene name LY75 (del Fresno et al. 2019). It is encoded in the second 

chromosome in both human and mouse. While essentially any human hematopoietic 

cell express DEC-205 (Kato et al. 2006), in the mouse, it is expressed at low levels by B 

and T cells and granulocytes (Sancho and Reis e Sousa 2012), with a high expression in 

DCs (Jiang et al. 1995), in particular CD8+ DCs (Heath et al. 2004) 
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(http://www.immgen.com; (Heng et al. 2008)). From the structural point of view, DEC-

205 belongs to the group VI of transmembrane CLRs, which includes CLRs bearing 

multiple CRD whose ligand binding capacity is calcium-dependent. The intracellular 

domain of DEC-205 is characterized by the absence of any identifiable ITAM or ITIM 

motif (Sancho and Reis e Sousa 2012).  

DEC-205 can bind bacterial ligands (Zhang et al. 2008), oxLDL (Nickel et al. 2009) 

and apoptotic cells (Shrimpton et al. 2009). Using antibodies that bind DEC-205, early 

studies showed that this receptor internalizes antigens to the endo/lysosome in thymic 

epithelial cells and DCs (Jiang et al. 1995). Afterwards, it was demonstrated that this 

DEC-205-mediated endocytic capacity participated in the clearance of apoptotic 

thymocytes by thymic epithelial cells (Small and Kraal 2003). Eventually, DEC-205 was 

defined as a death-sensing receptor that recognizes cells undergoing apoptosis and 

secondary necrosis (Shrimpton et al. 2009). This binding is pH-dependent, requiring an 

acidic environment (Cao et al. 2015). This is evolutionarily consistent with the function 

of DEC-205 as a death receptor, because extracellular acidification usually associates 

with inflammation, constituting a danger signal (Rajamäki et al. 2013). Eventually, 

keratins have been described as the actual ligand for DEC-205 (Cao et al. 2016).  

Most of the latest studies on DEC-205 are focused on its use as a target in antigen 

delivery strategies due to its expression pattern and endocytic capacity leading to 

antigen presentation (Iberg and Hawiger 2019). In this sense, the immune outcome can 

be modulated to promote immunity against viral infections (Padilla-Quirarte et al. 2019) 

or cancer (Johnson et al. 2008), or tolerance for diabetes treatment (Petzold et al. 2012). 
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There is not a clear picture of the inflammatory responses triggered after natural 

recognition of dead cells by DEC-205. As indicated for CLEC10A, the clearance of 

apoptotic cells may be silent for the immune system, but further studies are required to 

clarify this point. In addition, lessons learnt from targeting studies suggest that, 

depending on the surrounding context, DEC-205 may be quite plastic in the signaling 

delivered after its engagement, which constitutes a core property of CLRs (del Fresno et 

al. 2018). 

 

5. Conclusions 

During virtually any stress conditions, tissue damage and cell death take place, 

and the recognition of associated molecular cues by myeloid CLRs in these 

circumstances is key for tailoring immune responses. However, programmed cell death 

is also a relevant process that occurs under homeostatic conditions for the maintenance 

of tissue fitness. Here, we have dissected different forms of cell death and how these 

events condition the inflammatory responses triggered after their sensing. 

Myeloid CLRs are main players in tissue damage sensing, displaying great 

functional plasticity, both in terms of ligand recognition and the inflammatory outcomes 

of this sensing. As CLRs are prompted to crosstalk, their specific ligand, the surrounding 

environment and other receptors simultaneously activated, are important factors to 

consider. All these variables can affect the functional consequences of the engagement 

of a particular CLR.  

As described in this chapter, the recognition of cell death by myeloid CLRs can 

generate either regulatory or inflammatory reactions, impacting both innate and 
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adaptive immune responses. Therefore, understanding how myeloid CLRs (and other 

receptors) recognize certain cell death programs is fundamental to harness these 

responses for therapeutic purposes, as CLRs are surface molecules whose function can 

be easily targeted.  
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