65 research outputs found

    Yurumein - Homeland Study Guide

    Get PDF
    The Garifuna and Carib communities of St Vincent in the Caribbean collaborated with the documentary filmmaker Andrea E. Leland to produce Yurumein – Homeland: The Caribs of St Vincent, an exploration of the historical and spiritual significance of St Vincent and Baliceaux to Garifuna and Carib communities. This film guide speaks about the history, culture, music, and food of the peoples that were displaced from their home and, through activities addressing the film\u27s content, informs readers about the movement to bring Garifuna/Kalinago culture back to St Vincent and reconnect Garinagu to their homeland.https://digitalcommons.colum.edu/leland_study/1001/thumbnail.jp

    Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis

    Get PDF
    Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopolesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells

    Intranasal “painless” Human Nerve Growth Factors Slows Amyloid Neurodegeneration and Prevents Memory Deficits in App X PS1 Mice

    Get PDF
    Nerve Growth Factor (NGF) is being considered as a therapeutic candidate for Alzheimer's disease (AD) treatment but the clinical application is hindered by its potent pro-nociceptive activity. Thus, to reduce systemic exposure that would induce pain, in recent clinical studies NGF was administered through an invasive intracerebral gene-therapy approach. Our group demonstrated the feasibility of a non-invasive intranasal delivery of NGF in a mouse model of neurodegeneration. NGF therapeutic window could be further increased if its nociceptive effects could be avoided altogether. In this study we exploit forms of NGF, mutated at residue R100, inspired by the human genetic disease HSAN V (Hereditary Sensory Autonomic Neuropathy Type V), which would allow increasing the dose of NGF without triggering pain. We show that “painless” hNGF displays full neurotrophic and anti-amyloidogenic activities in neuronal cultures, and a reduced nociceptive activity in vivo. When administered intranasally to APPxPS1 mice ( n = 8), hNGFP61S/R100E prevents the progress of neurodegeneration and of behavioral deficits. These results demonstrate the in vivo neuroprotective and anti-amyloidogenic properties of hNGFR100 mutants and provide a rational basis for the development of “painless” hNGF variants as a new generation of therapeutics for neurodegenerative diseases

    Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    Get PDF
    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons

    Community understandings of childhood transitions in Ethiopia: Different for girls?

    No full text
    The paper explores the perspectives of caregivers and other adults on the nature and timing of childhood transitions, elicited through group discussions in five Ethiopian communities, as reflective of the community norms that shape childhood transitions. The paper uses data from Young Lives, a longitudinal study of children growing up in poverty, to investigate the transitions made by girls from childhood to the onset of puberty. It argues that these transitions are rarely linear, singular, or focused on ‘learning’, but instead multiple and often contradictory. While girls are said to be constrained by lack of opportunities, the main constraint to successful transitions in the communities discussed in the paper is having too many potentially contradictory opportunities, too soon

    The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells.

    No full text
    We are employing recent advances in the understanding of the cell cycle to study the inverse relationship between proliferation and neuronal differentiation. Nerve growth factor and aphidicolin, an inhibitor of DNA polymerases, synergistically induce neuronal differentiation of SH-SY5Y neuroblastoma cells and the expression of p21WAF1, an inhibitor of cyclin-dependent kinases. The differentiated cells continue to express p21WAF1, even after removal of aphidicolin from the culture medium. The p21WAF1 protein coimmunoprecipitates with cyclin E and inhibits cyclin E-associated protein kinase activity. Each of three antisense oligonucleotides complementary to p21WAF1 mRNA partially blocks expression of p21WAF1 and promotes programmed cell death. These data indicate that p21WAF1 expression is required for survival of these differentiating neuroblastoma cells. Thus, the problem of neuronal differentiation can now be understood in the context of negative regulators of the cell cycle

    A novel, nerve growth factor-activated pathway involving nitric oxide, p53, and p21WAF1 regulates neuronal differentiation of PC12 cells

    No full text
    During development, neuronal differentiation is closely coupled with cessation of proliferation. We use nerve growth factor (NGF)-induced differentiation of PC12 pheochromocytoma cells as a model and find a novel signal transduction pathway that blocks cell proliferation. Treatment of PC12 cells with NGF leads to induction of nitric oxide synthase (NOS) (Peunova, N., and Enikolopov, G. (1995) Nature 375, 68-73). The resulting nitric oxide (NO) acts as a second messenger, activating the p21(WAF1) promoter and inducing expression of p21(WAF1) cyclin-dependent kinase inhibitor. NO activates the p21(WAF1) promoter by p53-dependent and p53-independent mechanisms. Blocking production of NO with an inhibitor of NOS reduces accumulation of p53, activation of the p21(WAF1) promoter, expression of neuronal markers, and neurite extension. To determine whether p21(WAF1) is required for neurite extension, we prepared a PC12 line with an inducible p21(WAF1) expression vector. Blocking NOS with an inhibitor decreases neurite extension, but induction of p21(WAF1) with isopropyl-1-thio-beta-D-galactopyranoside restored this response. Levels of p21(WAF1) induced by isopropyl-1-thio-beta-D-galactopyranoside were similar to those induced by NGF. Therefore, we have identified a signal transduction pathway that is activated by NGF; proceeds through NOS, p53, and p21(WAF1) to block cell proliferation; and is required for neuronal differentiation by PC12 cells
    corecore