63 research outputs found

    Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia

    Get PDF
    Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopathology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unresolved. Here we identify a pivotal function of tissue macrophages (Mϕ) in eosinophil anti-helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection. Post-infection, peritoneal Mϕ populations proliferated and became alternatively-activated (AAMϕ). Filarial AAMϕ development required adaptive immunity and interleukin-4 receptor-alpha. Depletion of Mϕ prior to infection suppressed eosinophilia and facilitated worm survival. Add back of filarial AAMϕ in Mϕ-depleted mice recapitulated a vigorous eosinophilia. Transfer of filarial AAMϕ into Severe-Combined Immune Deficient mice mediated immunological resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitulated tissue AAMϕ expansions, sustained eosinophilia and mediated immunological resistance in Mϕ-intact SCID mice. Co-culturing Brugia with filarial AAMϕ and/or filarial-recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demonstrates that IL-4/IL-4Rα activated AAMϕ orchestrate eosinophil immunity to filarial tissue helminth infection

    A mouse infection model and long-term lymphatic endothelium co-culture system to evaluate drugs against adult Brugia malayi

    Get PDF
    The development of new drugs targeting adult-stage lymphatic filarial nematodes is hindered by the lack of a robust long-term in vitro culture model. Testing potential direct-acting and anti-Wolbachia therapeutic candidates against adult lymphatic filariae in vitro requires their propagation via chronic infection of gerbils. We evaluated Brugia malayi parasite burden data from male Mongolian gerbils compared with two immune-deficient mouse strains highly susceptible to B. malayi: CB.17 Severe-Combined Immmuno-Deficient (SCID) and interleukin-4 receptor alpha, interleukin-5 double knockout (IL-4Rα-/-IL-5-/-) mice. Adult worms generated in IL-4Rα-/-IL-5-/- mice were tested with different feeder cells (human embryonic kidney cells, human adult dermal lymphatic endothelial cells and human THP-1 monocyte differentiated macrophages) and comparative cell-free conditions to optimise and validate a long-term in vitro culture system. Cultured parasites were compared against those isolated from mice using motility scoring, metabolic viability assay (MTT), ex vivo microfilariae release assay and Wolbachia content by qPCR. A selected culture system was validated as a drug screen using reference anti-Wolbachia (doxycycline, ABBV-4083 / flubentylosin) or direct-acting compounds (flubendazole, suramin). BALB/c IL-4Rα-/-IL-5-/- or CB.17 SCID mice were superior to Mongolian gerbils in generating adult worms and supporting in vivo persistence for periods of up to 52 weeks. Adult females retrieved from BALB/c IL-4Rα-/-IL-5-/- mice could be cultured for up to 21 days in the presence of a lymphatic endothelial cell co-culture system with comparable motility, metabolic activity and Wolbachia titres to those maintained in vivo. Drug studies confirmed significant Wolbachia depletions or direct macrofilaricidal activities could be discerned when female B. malayi were cultured for 14 days. We therefore demonstrate a novel methodology to generate adult B. malayi in vivo and accurately evaluate drug efficacy ex vivo which may be adopted for drug screening with the dual benefit of reducing overall animal use and improving anti-filarial drug development

    Tetracyclines improve experimental lymphatic filariasis pathology by disrupting interleukin-4 receptor-mediated lymphangiogenesis

    Get PDF
    Lymphatic filariasis is the major global cause of nonhereditary lymphedema. We demonstrate that the filarial nematode Brugia malayi induced lymphatic remodeling and impaired lymphatic drainage following parasitism of limb lymphatics in a mouse model. Lymphatic insufficiency was associated with elevated circulating lymphangiogenic mediators, including vascular endothelial growth factor C. Lymphatic insufficiency was dependent on type 2 adaptive immunity, the interleukin-4 receptor, and recruitment of C-C chemokine receptor-2–positive monocytes and alternatively activated macrophages with a prolymphangiogenic phenotype. Oral treatments with second-generation tetracyclines improved lymphatic function, while other classes of antibiotic had no significant effect. Second-generation tetracyclines directly targeted lymphatic endothelial cell proliferation and modified type 2 prolymphangiogenic macrophage development. Doxycycline treatment impeded monocyte recruitment, inhibited polarization of alternatively activated macrophages, and suppressed T cell adaptive immune responses following infection. Our results determine a mechanism of action for the antimorbidity effects of doxycycline in filariasis and support clinical evaluation of second-generation tetracyclines as affordable, safe therapeutics for lymphedemas of chronic inflammatory origin

    Onchocerca ochengi male worms implanted in SCID mice and gerbil : relationship between microfilaridermia status of cows, nodular worm viability and fertility and worm survival in the rodents

    Get PDF
    Background Current treatment options for onchocerciasis are sub-optimal, prompting research and development of a safe cure (macrofilaricide). Onchocerca ochengi, a parasite of cattle, is used as a close surrogate for the human parasite O. volvulus in a murine model for pre-clinical screening of macrofilaricides. Skin from naturally infected cattle have been used in previous studies as a reliable source of parasite material. However, there is limited knowledge on how source-related factors such as the microfilaridermia status of the cattle, the nodule load and nodular worm viability may affect survival of male O. ochengi worms implanted in the rodent hosts. Such relationships were investigated in this study. Methods Dermal tissue and nodules were obtained from Gudali cattle, dissected and cultured to obtain migrating microfilariae (mf) and male worms. Emerged male worms were implanted into SCID mice and Gerbils (Meriones unguiculatus) and recovery rates were determined upon 42 days post implantation. Finally, nodules were processed for histology and embryogram analyses to assess the nodular worm viability and fertility, respectively. Results Of the 69 cattle sampled, 24 (34.8%) were mf+ and 45 (65.2%) were mf–. The mean nodule loads were 180.5 ± 117.7 (mf+) and 110.6 ± 102.7 (mf-) (p = 0.0186). The mean male worm harvest from nodules were 76.8 ± 120.3 and 47.2 ± 33.4 (p = 0.2488) for mf+ and mf– cattle, respectively. The number of male worms per 100 nodules were 57/100 and 46/100 nodules for mf+ and mf– cows, respectively. Female worms from nodules of mf– cows had higher counts of both normal and abnormal embryos with higher proportions of dead nodular worms evinced by histology compared to those from mf+ cows. A total of 651 worms were implanted into mice and gerbils, out of which 129 (19.81%) were recovered. Logistic regression analysis indicated that the microfilaridermia status of the cattle (presence of mf) (OR = 4.3319; P = 0.001) is the single most important predictor of the success of male worm recovery after implantation into rodents. Conclusion Microfilaridermic cattle provide a promising source of adult O. ochengi. Male worms from this group of cattle have a better success rate of survival in a murine implant model. Nevertheless, in the programmatic point of view, amicrofilaridermic Gudali cattle would still constitute an important source of O. ochengi male worms with relatively good viability after implantation into rodents

    Characterization of Volatile Release and Sensory Properties of Model Margarines by Changing Fat and Emulsifier Content

    No full text
    WOS: 000475698800004Fat ratio and emulsifier content of water in oil margarine emulsions changes the sensory properties of the margarines by affecting the volatile release. The effect of fat and emulsifier content on volatile release using headspace/solid phase microextraction/gas chromatography/mass spectrometry (HS/SPME/GC/MS), and sensory properties of model margarine emulsions is investigated. 2-Heptanone, 2-nonanone, 2-undecanone, hexanoic acid, and delta-decalactone releases are found to be lower, while 2,3-butanedion and butanoic acid releases are higher in model margarine with high fat content. Also the releases of 2-nonanone, 2-undecanone, hexanoic acid, and delta-decalactone decreases due to the increase of the emulsifier ratio used in the model margarine. It is found that the hardness and G values of the margarines increased together with the increase of fat and emulsifier ratio. In model margarines, butter aroma and taste, cheese aroma and taste are intensely perceived characters by descriptive sensory analysis and they perceived more intensely in products with higher fat content. On the other hand, creamy character is perceived more intensely in model margarines with less fat content. The release of volatile compounds depended on fat and emulsifier content used in the model margarines. Taste and aroma of model margarines are especially affected by the change in fat content while textural properties are affected by both fat and emulsifier content.Practical Applications: The flavor of the food plays an important role in the consumer's choice of food, and it is influenced by the matrix and composition of the food. Fat is an important part of food, and on the other hand, overconsumption of fat could cause health problems. There is an increasing interest in foods with low fat content for healthier human diets. However, reducing the fat in the product leads to a change in the flavor and texture of the product. Designing the product with the desired properties without affecting the flavor of the food generates problems for the researchers. This study aimed to investigate the effect of fat and emulsifier content on volatiles of model margarine. Knowledge obtained from this study could provide a guide for margarine and spread producers to formulate low-fat margarine by using the data obtained on volatile release and flavor depending on fat content and emulsifier mixture of margarines. The volatile release and sensory properties of model margarines are affected by fat and emulsifier content. Model margarine emulsions with high fat content has higher 2,3-butanedion and butanoic acid release. Also 2-nonanone, 2-undecanone, hexanoic acid, and delta-decalactone releases decreases with increasing emulsifier content. Butter aroma, butter taste, cheese aroma, and cheese taste are intensely perceived volatiles in high-fat-content model margarines.Ege University Scientific Research Projects Coordination UnitEge University [16/MUH/028]This study was supported by Ege University Scientific Research Projects Coordination Unit (Project No: 16/MUH/028). The authors would also like to thank Aromsa Food Aroma and Food Additives Inc for supplying the aroma used in this research
    • …
    corecore