319 research outputs found

    Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands

    Get PDF
    In this screening study, biogenic volatile organic compound (BVOC) emissions from intact branches of lodgepole pine (Pinus contorta) trees were measured from trees at two forested sites that have been impacted differently by the mountain pine beetle (MPB), with one having higher mortality and the other with lower mortality. Differences in the amounts and chemical diversity of BVOC between the two sites and from apparently healthy trees versus trees in different stages of MPB attack are presented, as well as (for one site) observed seasonal variability in emissions. A brief comparison is made of geological and climatic characteristics as well as prior disturbances (both natural and man-made) at each site. Trees sampled at the site experiencing high MPB-related tree mortality had lower chemodiversity in terms of monoterpene (MT) emission profiles, while profiles were more diverse at the lower-mortality site. Also at the higher-mortality site, MPB-infested trees in various stages of decline had lower emissions of sesquiterpenes (SQTs) compared to healthy trees, while at the site with lower mortality, MPB-survivors had significantly higher SQT emissions during part of the growing season when compared to both uninfested and newly infested trees. SQT profiles differed between the two sites and, like monoterpene and oxygenated VOC profiles, varied through the season. For the low-mortality site in which repeated measurements were made over the course of the early summer–late fall, higher chemical diversity was observed in early- compared to late-season measurements for all compound classes investigated (MT, oxygenated VOC, and SQT), with the amount of change appearing to correlate to the MPB status of the trees studied. Emissions of 2-methyl-3-buten-2-ol (MBO) had a distinct seasonal signal but were not much different between healthy or infested trees, except in trees with dead needles, from which emissions of this compound were negligible, and in late-season MPB survivors, in which they were higher than in newly infested or uninfested trees. Emissions of SQT were significantly higher in the MPB survivors during both mid- and late-season sampling at the low-mortality site. The changes in emissions could have implications for regional air quality and climate through changes in ozone and aerosol distributions, although this study was designed as a preliminary screening effort and not enough individuals were sampled for all of the observed differences to be statistically demonstrated. Despite this, the compelling differences in emissions observed between the sites and individual trees with differing MPB-infestation statuses and the potential impacts these have on regional atmospheric chemistry argue for further research in this topic

    Upside-down fluxes Down Under: CO2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest

    Get PDF
    Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate is characterised by a mean annual precipitation of 800mm and a mean annual temperature of 18°C, hot summers and mild winters, with highly variable precipitation. In the 4-year study, the ecosystem was a sink each year (−225gCm−2yr−1 on average, with a standard deviation of 108gCm−2yr−1); inter-annual variations were not related to meteorological conditions. Daily net C uptake was always detected during the cooler, drier winter months (June through August), while net C loss occurred during the warmer, wetter summer months (December through February). Gross primary productivity (GPP) seasonality was low, despite longer days with higher light intensity in summer, because vapour pressure deficit (D) and air temperature (Ta) restricted surface conductance during summer while winter temperatures were still high enough to support photosynthesis. Maximum GPP during ideal environmental conditions was significantly correlated with remotely sensed enhanced vegetation index (EVI; r2 = 0.46) and with canopy leaf area index (LAI; r2= 0.29), which increased rapidly after mid-summer rainfall events. Ecosystem respiration (ER) was highest during summer in wet soils and lowest during winter months. ER had larger seasonal amplitude compared to GPP, and therefore drove the seasonal variation of NEE. Because summer carbon uptake may become increasingly limited by atmospheric demand and high temperature, and because ecosystem respiration could be enhanced by rising temperatures, our results suggest the potential for large-scale seasonal shifts in NEE in sclerophyll vegetation under climate change.The Australian Education Investment Fund, Australian Terrestrial Ecosystem Research Network, Australian Research Council and Hawkesbury Institute for the Environment at Western Sydney University supported this work. We thank Jason Beringer, Helen Cleugh, Ray Leuning and Eva van Gorsel for advice and support. Senani Karunaratne provided soil classification details

    Impacts of warming and elevated CO\u3csub\u3e2\u3c/sub\u3e on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time

    Get PDF
    It is unclear how elevated CO2 (eCO2) and the corresponding shifts in temperature and precipitation will interact to impact ecosystems over time. During a 7-year experiment in a semi-arid grassland, the response of plant biomass to eCO2 and warming was largely regulated by interannual precipitation, while the response of plant community composition was more sensitive to experiment duration. The combined effects of eCO2 and warming on aboveground plant biomass were less positive in ‘wet’ growing seasons, but total plant biomass was consistently stimulated by ~ 25% due to unique, supra-additive responses of roots. Independent of precipitation, the combined effects of eCO2 and warming on C3 graminoids became increasingly positive and supraadditive over time, reversing an initial shift toward C4 grasses. Soil resources also responded dynamically and non-additively to eCO2 and warming, shaping the plant responses. Our results suggest grasslands are poised for drastic changes in function and highlight the need for long-term, factorial experiments

    Faster turnover of new soil carbon inputs under increased atmospheric CO2

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1-4 years). Elevated CO2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO2 concentrations may be smaller than previously assumed.This work was supported by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research Program, under Award Number DE-SC-0010632. R.P.P. was supported by the U.S. Department of Agriculture NRI CSREES Program and by DOEs Terrestrial Ecosystem Science Program in the Climate and Environmental Sciences Division

    Trading water for carbon in the future : effects of elevated CO2 and warming on leaf hydraulic traits in a semiarid grassland

    Get PDF
    The effects of climate change on plants and ecosystems are mediated by plant hydraulic traits, including interspecific and intraspecific variability of trait phenotypes. Yet, integrative and realistic studies of hydraulic traits and climate change are rare. In a semiarid grassland, we assessed the response of several plant hydraulic traits to elevated CO2 (+200 ppm) and warming (+1.5 to 3°C; day to night). For leaves of five dominant species (three graminoids and two forbs), and in replicated plots exposed to 7 years of elevated CO2, warming, or ambient climate, we measured: stomatal density and size, xylem vessel size, turgor loss point, and water potential (pre-dawn). Interspecific differences in hydraulic traits were larger than intraspecific shifts induced by elevated CO2 and/or warming. Effects of elevated CO2 were greater than effects of warming, and interactions between treatments were weak or not detected. The forbs showed little phenotypic plasticity. The graminoids had leaf water potentials and turgor loss points that were 10% to 50% less negative under elevated CO2; thus, climate change might cause these species to adjust their drought resistance strategy away from tolerance and toward avoidance. The C4 grass also reduced allocation of leaf area to stomata under elevated CO2, which helps explain observations of higher soil moisture. The shifts in hydraulic traits under elevated CO2 were not, however, simply due to higher soil moisture. Integration of our results with others' indicates that common species in this grassland are more likely to adjust stomatal aperture in response to near-term climate change, rather than anatomical traits; this contrasts with apparent effects of changing CO2 on plant anatomy over evolutionary time. Future studies should assess how plant responses to drought may be constrained by the apparent shift from tolerance (via low turgor loss point) to avoidance (via stomatal regulation and/or access to deeper soil moisture)

    Terrestrial exposure of a fresh Martian meteorite causes rapid changes in hydrogen isotopes and water concentrations

    Get PDF
    Determining the hydrogen isotopic compositions and H2O contents of meteorites and their components is important for addressing key cosmochemical questions about the abundance and source(s) of water in planetary bodies. However, deconvolving the effects of terrestrial contamination from the indigenous hydrogen isotopic compositions of these extraterrestrial materials is not trivial, because chondrites and some achondrites show only small deviations from terrestrial values such that even minor contamination can mask the indigenous values. Here we assess the effects of terrestrial weathering and contamination on the hydrogen isotope ratios and H2O contents of meteoritic minerals through monitored terrestrial weathering of Tissint, a recent Martian fall. Our findings reveal the rapidity with which this weathering affects nominally anhydrous phases in extraterrestrial materials, which illustrates the necessity of sampling the interiors of even relatively fresh meteorite falls and underlines the importance of sample return missions

    Elevated CO\u3csub\u3e2\u3c/sub\u3e and warming shift the functional composition of soil nematode communities in a semiarid grassland

    Get PDF
    Climate change can alter soil communities and functions, but the consequences are uncertain for most ecosystems. We assessed the impacts of climate change on soil nematodes in a semiarid grassland using a 7-year, factorial manipulation of temperature and [CO2]. Elevated CO2 and warming decreased the abundance of plant-feeding nematodes and nematodes with intermediate to high values on the colonizer-persister scale (cp3-5), including predators and omnivores. Thus, under futuristic climate conditions, nematode communities were even more dominated by r-strategists (cp1-2) that feed on bacteria and fungi. These results indicate that climate change could alter soil functioning in semiarid grasslands. For example, the lower abundance of plant-feeding nematodes could facilitate positive effects of elevated CO2 and warming on plant productivity. The effects of elevated CO2 and warming on nematode functional composition were typically less than additive, highlighting the need for multi-factor studies

    Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the ‘Angry Summer’ of 2012/2013

    Get PDF
    As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23 % of background value), increased Bowen ratio (154 %) and reduced carbon uptake (60 %). At the same time the forest ecosystem showed increased latent heat flux (151 %), reduced Bowen ratio (19 %) and increased carbon uptake (112 %). Higher temperatures caused increased ecosystem respiration at all sites (up to 139 %). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65 %) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.Eva van Gorsel, Sebastian Wolf, James Cleverly, Peter Isaac, Vanessa Haverd, Cäcilia Ewenz, Stefan Arndt, Jason Beringer, Víctor Resco de Dios, Bradley J. Evans, Anne Griebel, Lindsay B. Hutley, Trevor Keenan, Natascha Kljun, Craig Macfarlane, Wayne S. Meyer, Ian McHugh, Elise Pendall, Suzanne M. Prober and Richard Silberstei

    Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes

    Get PDF
    Recent experimental evidence suggests that during heat extremes, wooded ecosystems may decouple photosynthesis and transpiration, reducing photosynthesis to near zero but increasing transpiration into the boundary layer. This feedback may act to dampen, rather than amplify, heat extremes in wooded ecosystems. We examined eddy covariance databases (OzFlux and FLUXNET2015) to identify whether there was field-based evidence to support these experimental findings. We focused on two types of heat extremes: (i) the 3 days leading up to a temperature extreme, defined as including a daily maximum temperature &gt;37&thinsp;∘C (similar to the widely used TXx metric), and (ii) heatwaves, defined as 3 or more consecutive days above 35&thinsp;∘C. When focusing on (i), we found some evidence of reduced photosynthesis and sustained or increased latent heat fluxes at seven Australian evergreen wooded flux sites. However, when considering the role of vapour pressure deficit and focusing on (ii), we were unable to conclusively disentangle the decoupling between photosynthesis and latent heat flux from the effect of increasing the vapour pressure deficit. Outside of Australia, the Tier-1 FLUXNET2015 database provided limited scope to tackle this issue as it does not sample sufficient high temperature events with which to probe the physiological response of trees to extreme heat. Thus, further work is required to determine whether this photosynthetic decoupling occurs widely, ideally by matching experimental species with those found at eddy covariance tower sites. Such measurements would allow this decoupling mechanism to be probed experimentally and at the ecosystem scale. Transpiration during heatwaves remains a key issue to resolve, as no land surface model includes a decoupling mechanism, and any potential dampening of the land–atmosphere amplification is thus not included in climate model projections.</p
    corecore