25 research outputs found

    Modified carbon-containing electrodes in stripping voltammetry of metals

    Full text link

    Application of selection mapping to identify genomic regions associated with dairy production in sheep

    Get PDF
    In Europe, especially in Mediterranean areas, the sheep has been traditionally exploited as a dual purpose species, with income from both meat and milk. Modernization of husbandry methods and the establishment of breeding schemes focused on milk production have led to the development of "dairy breeds." This study investigated selective sweeps specifically related to dairy production in sheep by searching for regions commonly identified in different European dairy breeds. With this aim, genotypes from 44,545 SNP markers covering the sheep autosomes were analysed in both European dairy and non-dairy sheep breeds using two approaches: (i) identification of genomic regions showing extreme genetic differentiation between each dairy breed and a closely related non-dairy breed, and (ii) identification of regions with reduced variation (heterozygosity) in the dairy breeds using two methods. Regions detected in at least two breeds (breed pairs) by the two approaches (genetic differentiation and at least one of the heterozygosity-based analyses) were labeled as core candidate convergence regions and further investigated for candidate genes. Following this approach six regions were detected. For some of them, strong candidate genes have been proposed (e.g. ABCG2, SPP1), whereas some other genes designated as candidates based on their association with sheep and cattle dairy traits (e.g. LALBA, DGAT1A) were not associated with a detectable sweep signal. Few of the identified regions were coincident with QTL previously reported in sheep, although many of them corresponded to orthologous regions in cattle where QTL for dairy traits have been identified. Due to the limited number of QTL studies reported in sheep compared with cattle, the results illustrate the potential value of selection mapping to identify genomic regions associated with dairy traits in sheep

    Genetic and genomic analyses underpin the feasibility of concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep

    Get PDF
    Milk yield is the most important dairy sheep trait and constitutes the key genetic improvement goal via selective breeding. Mastitis is one of the most prevalent diseases, significantly impacting on animal welfare, milk yield and quality, while incurring substantial costs. Our objectives were to determine the feasibility of a concomitant genetic improvement programme for enhanced milk production and resistance to mastitis. Individual records for milk yield, and four mastitis-related traits (milk somatic cell count, California Mastitis Test score, total viable bacterial count in milk and clinical mastitis presence) were collected monthly throughout lactation for 609 ewes of the Chios breed. All ewes were genotyped with a mastitis specific custom-made 960 single nucleotide polymorphism (SNP) array. We performed targeted genomic association studies, (co)variance component estimation and pathway enrichment analysis, and characterised gene expression levels and the extent of allelic expression imbalance. Presence of heritable variation for milk yield was confirmed. There was no significant genetic correlation between milk yield and mastitis traits. Environmental factors appeared to favour both milk production and udder health. There were no overlapping of SNPs associated with mastitis resistance and milk yield in Chios sheep. Furthermore, four distinct Quantitative Trait Loci (QTLs) affecting milk yield were detected on chromosomes 2, 12, 16 and 19, in locations other than those previously identified to affect mastitis resistance. Five genes (DNAJA1, GHR, LYPLA1, NUP35 and OXCT1) located within the QTL regions were highly expressed in both the mammary gland and milk transcriptome, suggesting involvement in milk synthesis and production. Furthermore, the expression of two of these genes (NUP35 and OXCT1) was enriched in immune tissues implying a potentially pleiotropic effect or likely role in milk production during udder infection, which needs to be further elucidated in future studies. In conclusion, the absence of genetic antagonism between milk yield and mastitis resistance suggests that simultaneous genetic improvement of both traits be achievable

    Nanoparticles isolated from blood: a reflection of vesiculability of blood cells during the isolation process

    No full text
    Vid Šuštar1, Apolonija Bedina-Zavec1,2, Roman Štukelj1, Mojca Frank3, Goran Bobojevic1, Rado Janša4, Eva Ogorevc5, Peter Kruljc6, Keriya Mam7, Boštjan Šimunic8, Mateja Mancek-Keber9, Roman Jerala9, Blaž Rozman3, Peter Veranic10, Henry Hägerstrand11, Veronika Kralj-Iglic11Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 2Laboratory of Biosynthesis and Biotransformation, National Institute of Chemistry, Ljubljana, Slovenia; 3Departments of Rheumatology; 4Gastroenterology, Ljubljana University Medical Centre, Ljubljana, Slovenia; 5Laboratory of Biophysics, Faculty of Electrical Engineering; 6Clinics for Reproduction and Horses, Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia; 7FEI Quanta, Eindhoven, The Netherlands; 8Laboratory of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia; 9University of Primorska, Science and Research Centre of Koper, Koper, Slovenia; 10Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 11Department of Biosciences, Biocity, Åbo Akademi University, Åbo/Turku, FinlandBackground: Shedding of nanoparticles from the cell membrane is a common process in all cells. These nanoparticles are present in body fluids and can be harvested by isolation. To collect circulating nanoparticles from blood, a standard procedure consisting of repeated centrifugation and washing is applied to the blood samples. Nanoparticles can also be shed from blood cells during the isolation process, so it is unclear whether nanoparticles found in the isolated material are present in blood at sampling or if are they created from the blood cells during the isolation process. We addressed this question by determination of the morphology and identity of nanoparticles harvested from blood.Methods: The isolates were visualized by scanning electron microscopy, analyzed by flow cytometry, and nanoparticle shapes were determined theoretically.Results: The average size of nanoparticles was about 300 nm, and numerous residual blood cells were found in the isolates. The shapes of nanoparticles corresponded to the theoretical shapes obtained by minimization of the membrane free energy, indicating that these nanoparticles can be identified as vesicles. The concentration and size of nanoparticles in blood isolates was sensitive to the temperature during isolation. We demonstrated that at lower temperatures, the nanoparticle concentration was higher, while the nanoparticles were on average smaller.Conclusion: These results indicate that a large pool of nanoparticles is produced after blood sampling. The shapes of deformed blood cells found in the isolates indicate how fragmentation of blood cells may take place. The results show that the contents of isolates reflect the properties of blood cells and their interaction with the surrounding solution (rather than representing only nanoparticles present in blood at sampling) which differ in different diseases and may therefore present a relevant clinical parameter.Keywords: nanoparticles, nanovesicles, microparticles, microvesicles, cell–cell communicatio

    Sperm superoxide dismutase is associated with bull fertility

    No full text
    Decreasing mammalian fertility and sperm quality have created an urgent need to find effective methods to distinguish non-viable from viable fertilising spermatozoa. The aims of the present study were to evaluate expression levels of β-tubulin 2C (TUBB2C), heat shock protein 10 (HSP10), hexokinase 1 (HXK1) and superoxide dismutase 1 (SOD1) in spermatozoa from Holstein bulls with varying fertility using western blotting and to analyse the biological networks of these key sperm proteins using a bioinformatics software (Metacore; Thomson-Reuters, Philadelphia, PA, USA). The rationales behind this study were that the sperm proteins play crucial roles in fertilisation and early embryonic development in mammals and ascertaining the biological networks of the proteins helps us better understand sperm physiology and early mammalian development. The results showed that expression of SOD1 was higher in spermatozoa from high fertility bulls (P\u3c0.05) and that SOD1 is the best protein to diagnose bulls based on the fertility index (P\u3c0.05). Using Metacore analysis, we identified an SOD1 network with pathways and linkages with other relevant molecules. We concluded that SOD1 sperm expression is associated with in vivo bull fertility. The findings are important because they illuminate molecular and cellular determinants of sperm viability and the identified protein markers can be used to determine bull fertility
    corecore