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Abstract

Milk yield is the most important dairy sheep trait and constitutes the key genetic improve-

ment goal via selective breeding. Mastitis is one of the most prevalent diseases, significantly

impacting on animal welfare, milk yield and quality, while incurring substantial costs. Our

objectives were to determine the feasibility of a concomitant genetic improvement pro-

gramme for enhanced milk production and resistance to mastitis. Individual records for milk

yield, and four mastitis-related traits (milk somatic cell count, California Mastitis Test score,

total viable bacterial count in milk and clinical mastitis presence) were collected monthly

throughout lactation for 609 ewes of the Chios breed. All ewes were genotyped with a masti-

tis specific custom-made 960 single nucleotide polymorphism (SNP) array. We performed

targeted genomic association studies, (co)variance component estimation and pathway

enrichment analysis, and characterised gene expression levels and the extent of allelic

expression imbalance. Presence of heritable variation for milk yield was confirmed. There

was no significant genetic correlation between milk yield and mastitis traits. Environmental

factors appeared to favour both milk production and udder health. There were no overlap-

ping of SNPs associated with mastitis resistance and milk yield in Chios sheep. Further-

more, four distinct Quantitative Trait Loci (QTLs) affecting milk yield were detected on

chromosomes 2, 12, 16 and 19, in locations other than those previously identified to affect

mastitis resistance. Five genes (DNAJA1, GHR, LYPLA1, NUP35 and OXCT1) located

within the QTL regions were highly expressed in both the mammary gland and milk tran-

scriptome, suggesting involvement in milk synthesis and production. Furthermore, the

expression of two of these genes (NUP35 and OXCT1) was enriched in immune tissues

implying a potentially pleiotropic effect or likely role in milk production during udder infection,

which needs to be further elucidated in future studies. In conclusion, the absence of genetic
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antagonism between milk yield and mastitis resistance suggests that simultaneous genetic

improvement of both traits be achievable.

Introduction

The world’s commercial dairy sheep industry is primarily concentrated in Mediterranean

countries and linked to local breeds; milk is mostly used to produce high quality cheeses and

other dairy products. Milk yield represents more than two thirds of the total income of the

dairy sheep sector [1] and, therefore, increasing milk yield is the most important and some-

times only objective of selective breeding. Milk production traits in dairy sheep are lowly to

moderately heritable, with reported heritability estimates ranging from 0.13 to 0.51 [2, 3] and

amenable to improvement with traditional selective breeding programmes based on pedigree

and phenotypic data. Indeed, such programmes have been established in many sheep popula-

tions over recent decades [2, 4]. Incorporation of genomic information in some breeding pro-

grammes (e.g. French Lacaune, Spanish Churra, Italian Sarda) has led to an acceleration of the

genetic improvement outcomes.

The Greek Chios breed is considered to be among the most productive and prolific dairy

sheep breeds worldwide [5]. A traditional breeding programme for the enhancement of milk

yield has been in place since year 2000 for this breed, leading to substantial improvement in

this trait. However, further increases in milk yield may be achieved with the use of relevant

genomic information.

Beyond simply increasing milk production, the dairy sheep industry faces challenges such

as the need to offer healthy products to consumers, addressing animal welfare, and ensuring

the long-term competitiveness and sustainability of the sector. Mastitis is the most prevalent

and costly disease in the dairy industry due to reduced and discarded milk, early involuntary

culling of animals, and veterinary services and labour costs [6, 7]. The disease also poses a

potential threat of zoonosis and antimicrobial resistance if antibiotic treatment is not applied

carefully [6–8]. Moreover, mastitis is a welfare concern because of associated pain, anxiety and

restlessness, and upsets the normal feeding behaviour of the animals [9]. Host resistance to

mastitis is generally a lowly heritable trait, with heritability estimates previously reported rang-

ing from 0.10 to 0.20 [7]. Recently, an ovine custom made mastitis specific 960-SNP DNA

array was built to facilitate genetic selection and improvement of animal resistance to mastitis

in dairy sheep [10] [11] [12] [13]. We previously used this array in a targeted genomic associa-

tion study and detected five quantitative trait loci (QTLs) for mastitis resistance in Chios sheep

[10].

In the present study, we examined the genetic relationship between milk yield and mastitis

resistance in the Chios sheep, using pedigree and genomic information. Mastitis resistance

was manifested with four relevant measured traits, namely milk somatic cell count, California

Mastitis Test score, total viable bacterial count in milk and clinical manifestation of the disease.

The relationship between milk yield and these -mastitis traits is crucial if enhancing mastitis

resistance is to be included in the selective breeding goal together with increasing milk produc-

tion. We estimated genetic parameters and investigated whether SNP markers previously

found to be associated with mastitis resistance in Chios sheep were also associated with milk

yield, using the ovine custom-made mastitis-specific array. We also performed pathway analy-

sis and examined gene expression and allelic expression imbalance to assess whether genes

located under the QTL regions, were enriched in tissues relevant to milk yield and mastitis

resistance.

Concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep
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Materials and methods

Ethical statement

The study was approved by the Ethics and Research Committee of the Faculty of Veterinary

Medicine, Aristotle University of Thessaloniki, Greece. Permits for access and use of the

commercial farms were granted by the farm owners, who were members of the Chios Sheep

Breeders’ Cooperative “Macedonia”. During sampling, animals were handled by qualified vet-

erinarians. Permission to qualified veterinarians to perform milk and blood sampling was

granted by the National (Greek) Legislature for the Veterinary Profession, No. 344/29-12-

2000.

Animals, sampling and phenotyping

Animals used in the present study included 609 purebred Chios dairy ewes raised in four com-

mercial farms in Greece. Complete pedigree data were available comprising a total of 38,459

animals, 1,892 sires and 20,634 dams. Ewes were in their first or second lactation. Daily milk

yield was recorded on each animal on the day of monthly visits to the farms during the first

five months of lactation. The first milk yield record was obtained at least three days after lamb

weaning (ca. 42 days post lambing), which signals the onset of lactation. The total number of

individual animal records was 2,436. Animal records for clinical mastitis occurrence (CM) and

three mastitis indicator traits (milk somatic cell count (SCC), California Mastitis Test (CMT)

score and total viable bacterial count (TVC) in milk) were also collected at the time of these

visits by a qualified veterinarian. On the day of visit, the presence or absence (0/1) of CM was

recorded and two 50 ml milk samples were collected in the milking parlour under aseptic con-

ditions for the measurement of CMT, SCC and TVC. CMT was scored on a scale from 0 to 4,

with high values indicating the presence of elevated SCC and, potentially, pathogens in milk;

this test was performed with a commercial kit according to manufacturer’s instructions (Bovi-

vet, Kruuse, Germany). SCC was measured with Fossomatic 360 (Foss Electric, Hillerød, Den-

mark) and expressed as the number of cells/ml of milk. TVC was measured with Bactoscan FC

50 (Foss Electric, Hillerød, Denmark) and expressed as the number of viable bacteria/ml of

milk. The three mastitis indicator traits, CMT, SCC and TVC, may capture subclinical mastitis

incidences and reflect the general health status of the udder. Peripheral blood samples were

taken from each ewe in 9 ml K2EDTA Vacutainer blood collection tubes (BD diagnostics) by

jugular venepuncture for genomic DNA extraction.

Genetic parameter estimation

Genetic parameters for milk yield were estimated using the following basic mixed model:

Yijkmno ¼ μþ Fi þ YSj þ a1 � ageþ Lk þ
X2

n¼1

bnPnWm þ go þ peo þ eijkmno ð1Þ

Where: Y = record of ewe o in week of lactationm
μ = overall mean

F = fixed effect of flock (farm) i
YS = fixed effect of year-season of lambing j
α1 = linear regression on age at lambing (age)
L = fixed effect of lactation number k
W = fixed effect of week of lactation (i.e. week post-lambing)m
bn = fixed regression coefficient on week of lactationm (order n = 2)

Pn = orthogonal polynomial of weekm (order n = 2)

Concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep
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g = random additive genetic effect of ewe o, including pedigree genetic relationships

among animals

pe = random permanent environment effect of ewe o
e = random residual effect

Heritability and repeatability estimates were derived from the variance components calcu-

lated for the random effects in model (1). In a separate analysis, the additive genetic and per-

manent environment effects in model (1) were replaced by interactions of the latter with

second-order polynomial functions of week of lactation. The choice of polynomial order was

decided after testing sequentially increasing orders with the log-likelihood test. This analysis

resulted in distinct variance component and genetic parameter estimates by week of lactation,

which were then combined to derive average heritability and repeatability estimates for early

(weeks of lactation 1–7), mid (weeks 8–17) and late (weeks 18–24) lactation. In addition,

genetic correlations between milk yields measured at different lactation stages were calculated

based on corresponding genetic covariance estimates. A smoothed lactation curve adjusted for

all fixed effects in the model was also derived.

Finally, bivariate analyses of milk yield and each one of the four mastitis related traits were

conducted using model (1). The four mastitis traits were analysed as described in [10]. Briefly,

SCC and TVC data, which were originally significantly skewed, were log-transformed to

ensure a normal distribution. CM was recorded as a 0/1 trait and, therefore, a logit function

was fitted to account for its binary nature. Outcomes from the bivariate analyses were used to

estimate phenotypic and genetic correlations between traits.

All statistical analyses in the present study were conducted with ASReml v4.0 [14].

Targeted genomic association analysis

DNA was extracted from blood buffy coat as described previously [15].

All animals were genotyped with a customised mastitis specific 960 SNP DNA array con-

taining SNPs located on chromosomes 2, 3, 5, 12, 16 and 19. Briefly, this array was built based

on QTLs for mastitis resistance found to segregate in multiple different dairy sheep breeds.

For the design of this custom-made array, SNPs were selected from both 50K and 800K SNP

ovine DNA arrays, as well as from re-sequencing data. The average density of the array was 1

SNP every 23 Kb (for more details see [10]). This genomic tool was built within an FP7 Euro-

pean research project (http://cordis.europa.eu/result/rcn/163471_en.html). Genotypes at each

SNP locus were subjected to quality control measures using PLINK v1.9[16]. After excluding

SNPs with minor allele frequency < 0.05 and/or call rate< 0.95%, 731 SNP markers remained

for further analysis.

Possible population stratification was investigated with the use of the genomic relationship

matrix among individual animals. This matrix was converted to a distance matrix that was then

used to conduct multidimensional scaling analysis using the R package GenABEL v1.8[17].

Individual ewe phenotypes were residuals resulted after fitting a model that included all

fixed effects of model (1); thus, phenotypic records were adjusted for all these environmental

effects. Separate phenotypes were derived for the entire lactation (overall) and for each lactation

stage (early, mid, late) as described above. In all cases, GEMMA v0.94.1 [18] was used to conduct

genomic association analyses based on a mixed model that included the genomic relationship

matrix among individual ewes as a polygenic effect. After Bonferroni correction for multiple

testing, the significance threshold for nominal P<0.05 was set at P<6.83x10-5 and a suggestive

threshold (accounting for one false positive per genome scan) was set at P<1.36x10-3.

Statistically significant SNPs from the genomic association analyses were further examined

with a mixed model that included the fixed effects of model (1), the fixed effect of the SNP

Concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep

PLOS ONE | https://doi.org/10.1371/journal.pone.0214346 November 25, 2019 4 / 18

http://cordis.europa.eu/result/rcn/163471_en.html
https://doi.org/10.1371/journal.pone.0214346


genotype and the random effect of the animal including the pedigree relationship matrix.

Additive (a) and dominance (d) effects were calculated as follows:

a = (AA-BB)/2

d = AB-((AA+BB)/2)

where AA, BB and AB were the marginal means of the respective genotype. All analyses were

conducted with ASReml v4.0 [14].

Linkage disequilibrium (LD) among significant SNPs was calculated based on the r2 value

using PLINK v1.9 [16]. Blocks of LD in regions harbouring significant SNPs were visualised

using Haploview v4.2 [19].

All significant (post-Bonferroni correction) and suggestive SNPs identified in the genomic

analysis for milk yield were mapped to the reference genome and annotated using the Ensembl

variant effect predictor (http://www.ensembl.org/Tools/VEP) tool and the Oar v3.1 assembly.

Moreover, annotations for genes located both up- and down-stream (0.2 Mb) of the significant

markers in the candidate regions for milk yield were obtained from Ensembl BioMart data

mining tool (http://www.ensembl.org/biomart/martview/) and the Oar v3.1 assembly.

Pathway analysis

The list of annotated genes located within the QTL regions for milk yield identified in the pres-

ent study were analysed with the Ingenuity Pathway Analysis (IPA) programme (www.

ingenuity.com) in order to identify canonical pathways and gene networks constructed by the

products of these genes. All genes located in the genomic regions targeted by the custom-made

DNA array used in our study constituted the background of this analysis. IPA constructs mul-

tiple possible upstream regulators, pathways and networks which may be associated with the

biological mechanism underlying the studied trait. The analysis is based on data from large-

scale causal networks derived from the Ingenuity Knowledge Base. IPA then infers the most

suitable pathways and networks based on their statistical significance, after correcting for a

baseline threshold [20]. The IPA score in the constructed networks can be used to rank these

networks based on the P-values obtained using Fisher’s exact test (IPA score or P-score = –

log10(P value)).

Gene expression analysis

We performed gene expression analyses to assess whether genes located within the candidate

regions for milk yield were enriched in tissues relevant to milk yield and/or mastitis, assuming

enrichment indicated functional relevance. Genes contributing to milk production are likely

to be expressed in milk somatic cells, mammary gland, and other organs such as the liver and

kidney that provide nutrients and regulate the electrolytes needed for lactosynthesis and the

production of milk. We also reasoned that the expression of genes with pleiotropic effects

would be associated with both milk yield and resistance to mastitis, and/or expressed in both

mammary gland and immune related tissues. To assess the expression profiles of genes located

in the candidate regions for milk yield, we obtained publicly available data from an RNA-seq

characterisation of the milk transcriptome of two Spanish dairy sheep breeds, Churra and

Assaf, where milk somatic cells of eight individual sheep (four from each breed) had been sam-

pled throughout lactation at 10, 50, 120 and 150 days after lambing [21, 22]. To supplement

this data, we used publicly available RNA-Seq data from a high-resolution atlas of gene expres-

sion across tissues and cell types from all major organ systems in sheep [23, 24]. The sheep

gene expression atlas, which includes 437 RNA-Seq libraries was produced using six Texel x

Scottish Blackface sheep [23]. An additional 83 RNA-Seq libraries from a Texel trio (ewe, lamb

Concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep
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and ram) were included in the sheep gene expression atlas [24]. We extracted data pertaining

to the mammary gland, liver and kidney. Since we were interested in detecting genes related to

both milk yield and mastitis, we also extracted the expression level of the genes under consid-

eration in immune-related tissues, specifically hemolymph nodes, mesenteric, popliteal, pre-

scapular and submandibular lymph nodes, peripheral blood mononuclear cells, blood

leukocytes, monocyte-derived macrophages, bone marrow derived macrophages, alveolar

macrophages, and tonsils.

Expression levels for all samples, were estimated using Kallisto v0.42.4 [25]. To reduce

batch effects when combining data from different sources, particularly those employing differ-

ent RNA selection methods [26], expression was quantified using a set of transcripts constitut-

ing a standardised transcriptomic space, as described in [27] and [28]. Expression was

reported for each protein-coding transcript as the number of transcripts per million, and then

summarised to the gene-level (as in [29]). Heatmaps were drawn using the heatmap.2 function

of the R package gplots v3.0.1, in order to demonstrate expression enrichment in the different

tissues and lactation stages.

Variant calling and allelic expression imbalance analysis

Much of the genetic variation in genes that control a quantitative trait is likely to affect their

transcriptional regulation. In fact, many quantitative traits associated with altered gene expres-

sion, and trait-associated loci are enriched for eQTLs [30]. If an individual is heterozygous for

a cis-acting mutation it is expected that the two alleles of the gene will be expressed unequally

causing allelic expression imbalance. Measuring the relative expression levels of two alleles

using RNA-Seq may lead to the identification of cis-acting SNPs or haplotypes [31–34]. To

identify any cis-QTLs affecting the genes located in the candidate regions for milk yield we

obtained the raw RNA-Seq data for mammary gland tissue from three adult female Texel x

Scottish Blackface sheep from the sheep gene expression atlas [23]. The aligner HISAT2

(v2.0.4) [35], was used to produce the BAM files as previously described [23]. Variants were

called using BCFtools [36] mpileup (v1.4) with parameters—max-depth 1000000—min-MQ

60, followed by BCFtools call (v1.4) with parameters -m (allow multiallelic variants) and -v

(variant only). The minimum MAPQ (mapping quality) score was chosen to focus on uniquely

mapped reads for variant calling. The resulting VCF file contained both SNPs and indels. The

exonic variants of the protein coding genes located in the milk yield candidate regions were

obtained from each VCF file using the program GTF_Extract (v0.9.1) (https://github.com/fls-

bioinformatics-core/GFFUtils/blob/master/docs/GTF_extract.rst) and BEDtools [37] intersect

(v2.25.0) based on gene annotations from Ovis_aries.Oar_v3.1. The putative functional impact

of each variant on the encoded proteins was predicted using SnpEff v4.3 [38] with the parame-

ter–onlyProtein (only annotate protein-coding variants). BCFtools norm (v1.4) with parame-

ter–d was used to remove duplicated VCF records that arose due to duplicated exon

coordinates in the GTF file (that is, exons present in more than one transcript). Finally, VCFs

from each animal were filtered to obtain only biallelic heterozygous SNPs, using BCFtools

‘view’ (v1.4). For the allelic expression imbalance analysis we focused on biallelic heterozygous

exonic SNPs, since the non-exonic variants may signify transcriptional noise in mRNA

sequencing and contribute potential errors in the analysis.

Read counts for both the reference and alternate allele were obtained using allelecounter

v0.6 (https://github.com/secastel/allelecounter) with parameters—min_cov 4,—min_baseq 20

and—min_mapq 60 and—max_depth 10000. Allelic expression imbalance, per gene, was esti-

mated using MBASED (Meta-analysis Based Allele-Specific Expression Detection) [39] with

parameters isPhased = FALSE, numSim = 10^6, BPPARAM = SerialParam(). MBASED allelic

Concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep
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expression imbalance estimates were derived by combining information across individual het-

erozygous SNP within a gene. Only variants with>10 reads in either reference or alternate

allele were used. We retained only those genes with Benjamin-Hochberg [40] adjusted P<0.05

and major allele frequency > 0.7.

Results

Descriptive statistics

An average daily milk yield of 1,912 grams (g) was produced in the studied sheep population

with a standard deviation of 713 g, a maximum of 4,597 g and a minimum of 210 g. As

expected, milk yield decreased as lactation progressed [41].

All fixed effects that were included in the model of statistical analysis accounted for a signif-

icant (P<0.05) proportion in milk variation. This can be exemplified by the average daily milk

yield ranging from 1,787 g in lactation 1 (368 ewes) to 2,134 g in lactation 2 (241 ewes). Includ-

ing these significant sources of systematic variation in the model as fixed effects ensured the

unbiasedness of the variance component estimates of the random effects and corresponding

genetic parameters presented next.

Genetic parameters

Estimates of heritability and repeatability of milk yield (Table 1) were derived for the entire

lactation as well as different stages of lactation defined as early, mid and late. Statistically signif-

icant (P<0.05) moderate trait heritabilities (0.19–0.28) and repeatabilities (0.69–0.76) were

estimated across all lactation stages. Moreover, the genetic correlations between milk yield in

different lactation stages were significantly (P<0.05) positive. Specifically, average genetic cor-

relation between milk production in early and mid lactation was 0.89, early and late lactation

0.60, and mid and late lactation 0.86. The genetic correlation between early and late lactation

was significantly (P<0.05) lower than unity. In practical terms, lactation onset, peak lactation

and lactation persistence may have partly separate genetic control.

Genetic correlations between milk and mastitis traits measured throughout the entire lacta-

tion were not significantly different from zero (P>0.05). Negative phenotypic correlations

were observed between these traits (P<0.05), indicative of favourable environmental effects to

both production and health (Table 2).

Targeted genomic association analysis

Separate targeted genomic association analyses were conducted for milk yield in early, mid,

late and overall lactation. Multidimensional scaling analysis of the studied population revealed

no substructure. In general, similar genomic associations were detected for milk yield in mid-

dle, late and overall lactation but distinct associations were observed in early lactation. We

identified a statistically significant association after Bonferroni correction for multiple testing

on chromosome 19 (P = 1.28 x 10−5) and three suggestive associations on chromosomes 2

(P = 2.27 x 10−4), 12 (P = 3.35 x 10−4) and 16 (P = 6.03 x 10−4). Details of SNPs associated with

Table 1. Heritability (h2) and repeatability (r) estimates of daily milk yield in Chios sheep by lactation stage and across the entire lactation; standard errors in

parentheses.

Parameter Early lactation

(1–7 weeks)

Mid lactation (8–17 weeks) Late lactation (18–24 weeks) Overall lactation

h2 0.28 (0.06) 0.19 (0.06) 0.23 (0.06) 0.23 (0.06)

r 0.76 (0.02) 0.69 (0.02) 0.71 (0.02) 0.71 (0.02)

https://doi.org/10.1371/journal.pone.0214346.t001
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milk yield are shown in Table 3. Manhattan plots and corresponding Q-Q plots displaying

genomic association results are shown in Fig 1 and Fig 2, respectively.

The significance of the above SNP markers was confirmed in mixed model analyses based

on the pedigree genetic relationship matrix. The additive and dominance genetic effects of

each SNP in the corresponding lactation stage, are summarised in Table 3. Most SNPs had a

significant additive effect and a few a significant dominance effect on milk yield. When located

on the same chromosomes, the significant markers identified for milk yield were in linkage

disequilibrium (LD measured as r2 = 0.27–0.97), implying that they correspond to the same

causative mutation (S1 Table). Most importantly, the significant SNPs identified in the present

study were not in LD with the SNPs previously associated with the mastitis related traits in

Chios sheep [10] (S1 Table). Only small (less than 200kb length) LD blocks were visualised

with Haploview, probably due to a high number of recombination events having taken place

in the studied outbred population. All significant SNP markers were located in intergenic or

intronic regions. The candidate QTL regions for milk yield contained a relatively small num-

ber of protein-coding genes (n = 13), microRNAs (n = 3) and non-coding RNAs (n = 3) (S2

Table).

Pathway analysis

One significant (IPA score = 34) network of molecular interactions related with organ devel-

opment, organismal development and embryonic development was constructed from the

genes located in the candidate regions for milk yield (Fig 3).

Gene expression analysis

Six of the genes located in the candidate regions for milk yield (DNAJA1, GHR, LYPLAL1,

NUP35, OXCT1and RRP15) were expressed in either the milk transcriptome or the mammary

gland (S1–S3 Figs). The growth hormone receptor (GHR) and 3-oxoacid CoA transferase 1

(OXCT1) genes were highly expressed in liver and kidney cortex tissue, respectively (S2 Fig).

Moreover, OXCT1 and NUP35, detected in tissues related to milk production, were also

enriched in immune related tissues, relative to the other tissues analysed (S3 Fig).

Allelic expression imbalance analysis

Exonic SNP and indels were observed in all the protein coding genes located in the candidate

regions for milk yield. Missense variants were identified in several genes including CNTN4,

DNAJC1, GHR, NUP35 and RRP15. One-sampled MBASED analysis identified only one gene

RRP15 (P = 3e-03) with significant allelic expression imbalance. Specifically, two synonymous

Table 2. Estimates of phenotypic and genetic correlations between milk yield and four mastitis traits measured

throughout the entire lactation in Chios sheep; standard errors in parentheses.

Mastitis trait Phenotypic correlation Genetic correlation

SCC -0.18 (0.04)� -0.12 (0.14)

CMT -0.18 (0.04)� -0.12 (0.13)

TVC -0.10 (0.03)� -0.11 (0.14)

CM -0.07 (0.04) -0.09 (0.19)

SCC: milk somatic cell count, CMT: California Mastitis Test score, TVC: total bacterial count in milk, CM: clinical

mastitis occurrence

�Significantly different from zero (P<0.05)

https://doi.org/10.1371/journal.pone.0214346.t002
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SNPs in RRP15 (major allele frequency 0.71) were detected exhibiting allelic expression imbal-

ance (S3 Table). However, these results should be interpreted with caution since allelic expres-

sion imbalance was evident in only one of the three individual sheep.

Candidate genes

Based on all above results, a total of four genes (DNAJA1, GHR, LYPLA1 and OXCT1) were

selected as putative candidate genes for milk yield in Chios sheep (S4 Table). Genes were

selected using a combination of their known biological function, involvement in relevant net-

works, enrichment in tissues relevant to milk production, and any previously known associa-

tion with milk production in either dairy sheep or other species.

Table 3. List of Single Nucleotide Polymorphisms (SNPs) associated with milk yield in Chios sheep.

Lactation stage SNP Chr (position) P-value Add(P-value) Dom(P-value) p q

Early

1–7 weeks

OAR12_23075585 12(20050780) 3.35E-04 0.07(0.09) 0.07(0.10) 0.62 0.38

oar3_OAR12_19689222 12(19689222) 3.65E-04 0.05(0.36) 0.12(0.03) 0.73 0.27

oar3_OAR12_19269103 12(19269103) 4.66E-04 -0.03(0.33) 0.05(0.02) 0.73 0.27

oar3_OAR12_19500329 12(19500329) 6.98E-04 0.08(0.02) 0.02(0.64) 0.6 0.4

oar3_OAR12_19624437 12(19624437) 6.77E-04 0.05(0.30) 0.09(0.10) 0.72 0.28

oar3_OAR12_19840123 12(19840123) 9.80E-04 0.04(0.30) 0.08(0.10) 0.68 0.32

oar3_OAR16_33078067 16(33078067) 6.03E-04 -0.09(0.00) 0.20(0.05) 0.96 0.04

Middle

8–17 weeks

OAR19_25259444 19(23804520) 7.03E-05 -0.15 (0.00) 0.05 (0.25) 0.48 0.52

oar3_OAR19_24119431 19(24119431) 9.03E-04 -0.14(0.00) -0.02(0.53) 0.48 0.52

OAR19_25513179 19(24010793) 1.70E-03 -0.15(0.00) -0.01(0.77) 0.58 0.42

OAR16_34906481 16(32156238) 1.29E-03 -0.08(0.02) 0.07(0.05) 0.90 0.10

OAR2_133418483 2(125230366) 1.45E-03 0.08(0.51) -0.10(0.44) 0.92 0.08

OAR2_133088440 2(124907852) -2.27E-04 0.23(0.00) 0.19(0.03) 0.82 0.18

oar3_OAR2_124936445 2(124936445) 1.11E-03 0.12(0.06) 0.07(0.30) 0.78 0.22

Late

18–24 weeks

OAR19_25259444 19(23804520) 1.38E-04 -0.15(0.00) -0.02(0.57) 0.48 0.52

oar3_OAR19_24745933 19(24745933) 2.17E-04 0.10(0.00) -0.10(0.00) 0.54 0.46

OAR19_25830151 19(24342061) 1.35E-03 0.07(0.07) -0.00(0.87) 0.72 0.28

oar3_OAR19_24707843 19(24707843) 7.83E-04 -0.13(0.00) -0.09(0.03) 0.64 0.36

oar3_OAR19_23656789 19(23656789) 6.25E-04 -0.11(0.00) -0.06(0.11) 0.52 0.48

oar3_OAR2_124936445 2(124936445) 5.53E-04 0.11(0.02) -0.00(0.93) 0.78 0.22

OAR2_133088440 2(124907852) 4.15E-04 0.19(0.00) 0.09(0.18) 0.82 0.18

Overall OAR19_25259444 19(23804520) 1.28E-05 -0.14(0.00) -0.00(0.84) 0.48 0.52

oar3_OAR19_24032312 19(24032312) 2.70E-04 -0.11(0.00) -0.08(0.03) 0.6 0.4

oar3_OAR19_24707843 19(24707843) 2.90E-04 -0.12(0.00) -0.07(0.04) 0.64 0.36

OAR19_25513179 19(24010793) 4.16E-04 -0.11(0.00) -0.06(0.07) 0.58 0.42

oar3_OAR19_24119431 19(24119431) 4.79E-04 -0.11(0.00) -0.09(0.01) 0.48 0.52

oar3_OAR19_23929524 19(23929524) 5.62E-04 0.11(0.00) -0.03(0.29) 0.48 0.52

oar3_OAR19_24745933 19(24745933) 9.35E-04 0.10(0.00) -0.05(0.15) 0.54 0.46

oar3_OAR19_23891277 19(23891277) 1.17E-03 -0.10(0.00) -0.05(0.13) 0.54 0.46

oar3_OAR19_23656789 19(23656789) 1.44E-03 -0.10(0.00) -0.05(0.15) 0.52 0.48

OAR2_133088440 2(124907852) 9.47E-04 0.20(0.00) 0.12(0.06) 0.82 0.18

OAR2_133418483 2(125230366) 1.44E-03 0.10(0.30) -0.08(0.43) 0.92 0.08

P–value: P-value from genomic association study; additive allele substitution effect (ADD) and corresponding P-value; dominance effect (DOM) and corresponding P-

value; p and q allelic frequencies; SNP position is based on Oar v3.1 assembly.

https://doi.org/10.1371/journal.pone.0214346.t003
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Discussion

The existence of a mastitis-specific ovine DNA array built on previously detected QTL

regions associated with mastitis resistance in dairy sheep opens up opportunities for targeted

genomic and marker-assisted selection aiming to enhance animal resistance to the disease.

The aim of the present study was to investigate the association of this array with milk yield of

dairy sheep and assess the feasibility of a concomitant genetic improvement programme for

the two traits.

According to our results, milk yield and mastitis traits in the Chios sheep are not genetically

correlated to each other. Genetic correlation estimates between milk somatic cell count and

milk yield are reportedly antagonistic in dairy cattle [42] but inconsistent amongst previous

sheep studies ranging from antagonistic [43] to favourable [3]. Here we considered more than

600 carefully monitored and densely phenotyped individual animals, and more than 38,000

pedigrees. We believe the genetic correlation estimates derived, ranging from -0.09 to -0.12

(Table 2), are unbiased. Even if we had a larger dataset available, rendering the standard errors

small enough to qualify these estimates as significant, the practical implications would not

really change; estimates would still demonstrate a very weak connection between traits.

Indeed, an absolute correlation of 0.09–0.12 suggests that a very small proportion of the varia-

tion in two traits is common. Therefore, our findings indicate that selection for enhanced mas-

titis resistance could be incorporated into the current genetic improvement programme of the

Chios sheep without incurring adverse effects on milk yield.

Fig 1. Manhattan plots displaying the genomic association results for milk yield in Chios sheep. Manhattan plots for milk yield in early (A), mid (B), late (C), and

overall (D) lactation. Genomic location is plotted against -log10(P). Red and blue lines, respectively, are thresholds for significance post-Bonferroni correction (P<0.05)

and for suggestive significance (accounting for one false positive per genome scan).

https://doi.org/10.1371/journal.pone.0214346.g001
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An overall moderate but significant heritability for milk yield was estimated in Chios sheep,

consistent with the dairy sheep literature (ranging from 0.16 to 0.30) as reviewed in [44] and

previous studies in Chios sheep ranging from 0.21 to 0.29 [45].

Targeted genomic analyses were conducted to further investigate the underlying correlation

between milk yield and mastitis, in the context of utilising a mastitis-specific DNA array in geno-

mic selection aiming to improve mastitis resistance. These analyses revealed several SNPs on the

mastitis array with a significant effect on milk yield. However, these milk-associated SNPs were

not overlapping or being in LD with genomic regions that had been previously found to affect

mastitis resistance in the same population [10]. For example, the QTL for milk yield on chromo-

some 2 was 75 Mb distant from the one previously identified for mastitis resistance on the same

chromosome [10]. The association of this QTL region with milk yield is supported by results of a

previous genomic selection mapping study that compared dairy with meat sheep breeds to iden-

tify genomic regions for milk traits under selection [46]. In that study a highly homozygous region

was detected in both Chios and Churra sheep in close proximity with our QTL region on chromo-

some 2 [46]. Furthermore, the QTL for milk yield on chromosome 12 identified in the present

study was located within a previously identified QTL region for milk yield in East Friesian X Dor-

set cross sheep [47]. The QTLs on chromosomes 16 and 19 identified in the present study were

also independent from those previously identified for mastitis resistance on the same chromo-

somes in the Chios sheep; the latter were located 2–4 Mb away and were in zero LD with the

milk-associated region of the present study. QTLs for milk yield, milk protein and fat content

have also been identified on chromosome 16 in Churra sheep [48], in close proximity with the

Fig 2. Q-Q plots displaying the genomic association results for milk yield in Chios sheep. Q-Q plots in early (A), mid (B), late (C) and overall (D) lactation; observed

P-values are plotted against the expected P-values.

https://doi.org/10.1371/journal.pone.0214346.g002
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QTL identified here in Chios sheep. To the best of our knowledge, the QTL on chromosome 19 is

reported here for the first time.

In the QTL region identified for milk yield on chromosome 19 DNAJA1 was identified as a

good candidate gene. In the previous milk transcriptome study of the Churra and Assaf breeds,

two other genes belonging to the same gene family, DNAJA4 and DNAJB2, were reported as

functional candidates for milk yield [49]. The DNAJ family of proteins regulate ATP hydrolysis

activity, and facilitate protein folding, trafficking, prevention of aggregation and proteolytic

degradation; DNAJA1 functions as a co-chaperone and protects cells against apoptosis in

response to cellular stress [50]. Therefore, this gene might affect milk yield through both

metabolism and mammary apoptosis; the latter has been associated negatively with lactation

persistency (daily milk yield decline in late lactation stages) in dairy species [51].

Fig 3. Network analysis using the IPA software. A gene network related to organ, organismal and embryonic development. The network illustrates the

molecular interactions between candidate gene products for milk yield. Arrows with solid lines represent direct interactions and arrows with broken lines

represent indirect interactions. Genes with white labels are those added to the IPA analysis because of their interaction with the target gene products (in red).

https://doi.org/10.1371/journal.pone.0214346.g003
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Some of the candidate genes for milk yield identified in the present study have been previ-

ously reported in dairy cattle. For example, 3-oxoacid CoA transferase 1 (OXCT1) has been

associated favourably with both milk production [52] and mastitis resistance [53], and has

been suggested to regulate mammary gland metabolism and milk synthesis during mastitis

infection [54]. In our study, OXCT1 was found to be expressed in both mammary gland and

immune tissues, and highly expressed in the kidney cortex indicating that it may play a similar

role in sheep. Growth hormone receptor (GHR) has been previously associated with increased

milk yield and reduced milk somatic cell count in several dairy cattle studies [54–58]. Selective

sweeps were also identified in the GHR region after comparing dairy and beef cattle [59]. In

the present study, GHR was expressed in the mammary gland and the milk transcriptome, and

was highly expressed in liver, relative to the other tissues sampled for the sheep gene expres-

sion atlas (http://biogps.org/sheepatlas). However, further studies, preferably including ani-

mals of the Chios breed, are needed to confirm the relevance of these genes with the regulation

of milk production.

The significant SNP markers identified for milk yield in our study are mostly located in

QTLs that overlap with previously identified QTLs for milk yield in other dairy sheep popula-

tions [55–57]. The only QTL reported here for the first time is on chromosome 19, which

attained the highest significance level in the present study. These results are also consistent

with a previous study of Chios sheep [60], suggesting that a relatively major locus might be

involved in ovine milk production. Nevertheless, these SNPs were not associated with any of

the studied mastitis traits.

Conclusions

Results of the present study suggest that genetic selection for enhanced host resistance to mas-

titis will not antagonise milk yield in Chios sheep. Therefore, a genetic improvement pro-

gramme for enhancing both mastitis resistance and milk production is feasible for this breed.

In addition, there are QTLs within the mastitis specific DNA array that may be used to further

increase milk production with genomic selection. Genes within genomic regions associated

with ovine milk production exhibited tissue-specific expression patterns and pathways similar

to those observed in cattle indicating that the underlying genetic mechanisms are likely to be,

at least partially, conserved between the two species. These genes are suitable candidates for

further investigation to determine if they can be exploited in breeding programmes for con-

comitant improvement of milk production and mastitis resistance. Admittedly, the detection

of QTLs for milk yield was performed using a targeted SNP panel and not a genome-wide

array; therefore our scan was very focussed and major loci associated with milk production in

Chios sheep might not have been detected. Further studies using genome-wide DNA arrays

are needed to identify novel QTLs for milk yield.
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S3 Table. Allelic expression imbalance analysis using the one-sampled MBASED method.
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S1 Fig. Expression level of genes located in the milk yield candidate regions, as extracted

from the Churra and Assaf sheep milk transcriptome analysis. Expression level is estimated

as the mean number of transcripts per million of all (5) experimental replicates and is repre-

sented here as a z-score per individual animal.

(TIF)

S2 Fig. Expression level of genes located in the milk yield candidate regions, across all cell

lines/tissues. Expression level is estimated as the mean number of transcripts per million

(TPM) of all five (5) experimental replicates and is represented here as a z-score per cell line/

tissue. Data is obtained from the sheep gene expression atlas which includes data from Texel X

Scottish Blackface and Texel sheep.

(TIF)

S3 Fig. Expression level of genes, located in the milk yield candidate regions, across both

mammary gland and immune cell lines/tissues. Expression level is estimated as the mean

number of transcripts per million of all five (5) experimental replicates and is represented here

as a z-score per cell line/tissue. Data is obtained from the sheep gene expression atlas which

includes data from Texel X Scottish Blackface and Texel sheep.

(TIF)
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