613 research outputs found

    A model investigation for the control works of a floodway

    Full text link

    A multi-sensor approach towards a global vegetation corrected SRTM DEM product

    Get PDF
    AbstractWe develop the first global ‘Bare-Earth’ Digital Elevation Model (DEM) based on the Shuttle Radar Topography Mission (SRTM) for all landmasses between 60N and 54S. Our new ‘Bare-Earth’ SRTM DEM combines multiple remote sensing datasets, including point-ground elevations from NASA's laser altimeter ICESat, a database of percentage of tree cover from the MODIS satellite as a proxy for penetration depth of SRTM and a global vegetation height map in order to remove the vegetation artefacts present in the original SRTM DEM. We test multiple methods of removing vegetation artefacts and investigate the use of regionalization. Our final ‘Bare-Earth’ SRTM product shows global improvements greater than 10m in the bias over the original SRTM DEM in vegetated areas compared with ground elevations determined from ICESat data with a significant reduction in the root mean square error from over 14m to 6m globally. Therefore, our DEM will be valuable for any global applications, such as large scale flood modelling requiring a ‘Bare-Earth’ DEM

    Holography for the Lorentz Group Racah Coefficients

    Full text link
    A known realization of the Lorentz group Racah coefficients is given by an integral of a product of 6 ``propagators'' over 4 copies of the hyperbolic space. These are ``bulk-to-bulk'' propagators in that they are functions of two points in the hyperbolic space. It is known that the bulk-to-bulk propagator can be constructed out of two bulk-to-boundary ones. We point out that there is another way to obtain the same object. Namely, one can use two bulk-to-boundary and one boundary-to-boundary propagator. Starting from this construction and carrying out the bulk integrals we obtain a realization of the Racah coefficients that is ``holographic'' in the sense that it only involves boundary objects. This holographic realization admits a geometric interpretation in terms of an ``extended'' tetrahedron.Comment: 12 pages, 2 figures; v2: minor changes; v3: "extended" tetrahedron interpretation adde
    • …
    corecore