A known realization of the Lorentz group Racah coefficients is given by an
integral of a product of 6 ``propagators'' over 4 copies of the hyperbolic
space. These are ``bulk-to-bulk'' propagators in that they are functions of two
points in the hyperbolic space. It is known that the bulk-to-bulk propagator
can be constructed out of two bulk-to-boundary ones. We point out that there is
another way to obtain the same object. Namely, one can use two bulk-to-boundary
and one boundary-to-boundary propagator. Starting from this construction and
carrying out the bulk integrals we obtain a realization of the Racah
coefficients that is ``holographic'' in the sense that it only involves
boundary objects. This holographic realization admits a geometric
interpretation in terms of an ``extended'' tetrahedron.Comment: 12 pages, 2 figures; v2: minor changes; v3: "extended" tetrahedron
interpretation adde