469 research outputs found

    CasTuner: a degron and CRISPR/Cas-based toolkit for analog tuning of endogenous gene expression

    Get PDF
    Certain cellular processes are dose-dependent, requiring a specific quantity of gene products or a defined stoichiometry between them. This is exemplified by haploinsufficiency or by the need for dosage compensation for X-linked genes between the sexes in many species. Understanding dosage-sensitive processes requires the ability to perturb endogenous gene products in a quantitative manner. Here we present CasTuner, a CRISPR-based toolkit that allows analog tuning of endogenous gene expression. In the CasTuner system, activity of Cas-derived repressors is controlled through a FKBP12F36V degron domain and can thereby be quantitatively tuned by titrating the small molecule degrader dTAG-13. The toolkit can be applied at the transcriptional level, using the histone deacetylase hHDAC4 fused to dCas9, or at the post-transcriptional level, using the RNA-targeting CasRx. To optimise efficiency, inducibility and homogeneity of repression we target a fluorescently tagged endogenous gene, Esrrb, in mouse embryonic stem cells. Through flow cytometry, we show that CasTuner allows analog tuning of the target gene in a homogeneous manner across cells, as opposed to the widely used KRAB repressor domain, which exhibits a digital mode of action. We quantify repression and derepression dynamics for CasTuner and use it to measure dose-response curves between the pluripotency factor NANOG and several of its target genes, providing evidence for target-specific dose dependencies. CasTuner thus provides an easy-to-implement tool to perturb gene expression in an inducible, tunable and reversible manner and will be useful to study dose-responsive processes within their physiological contex

    Sedative effects of intramuscular alfaxalone in pet guinea pigs (Cavia porcellus)

    Get PDF
    Objective: To evaluate the efficacy and side effects of alfaxalone administered intramuscularly (IM) as a sedative agent in guinea pigs undergoing survey radiographs

    Persistent nonbilious vomiting in a child: Possible duodenal webbing

    Get PDF
    An association between malrotation and congenital duodenal webbing is rare. We present our experience with four patients at two centers, and a review of published reports. There are currently 94 reported cases of duodenal pathology associated with malrotation. However, only 15 of the 94 cases (15.9%) include patients with malrotation and a duodenal web. We suggest that nonbilious vomiting in a child must prompt the surgeon to consider duodenal pathology even in the presence of malrotation

    Histone deacetylase 4 is crucial for proper skeletal muscle development and disease

    Get PDF
    Epigenetics plays a pivotal role in modulating gene response to physiological or pathological stimuli. Histone Deacetylase inhibitors (HDACi) have been used in the treatment of various cancers1, are ef-fective in several animal models of neurodegenerative diseases, including amyotrophic lateral scle-rosis (ALS), and are currently in clinical trial to promote muscle repair in muscular dystrophies2. However, long-term use of pan-HDAC inhibitors is not tolerated3. The assignment of distinct biologi-cal functions to individual HDACs in skeletal muscle is a prerequisite to improve the efficacy of pharmacological treatments based on HDACi. HDAC4 is a member of class II HDACs that mediates many cellular responses. Clinical reports suggest that inhibition of HDAC4 can be beneficial to cancer cachexia, dystrophic or ALS patients. All the above conditions are characterized by progressive mus-cle wasting and up-regulation of HDAC4 expression in skeletal muscle, suggesting a potential role for this protein in regulating these diseases. To study the role of HDAC4 with a genetic approach, we generated several models of muscle disease in mice lacking HDAC4 in skeletal muscle: cancer ca-chexia, by implanting Lewis lung carcinoma (LLC), muscular dystrophy, by using mdx mice, or ALS, by using SODG93A mice. Lack of HDAC4 worsens skeletal muscle atrophy induced by both LLC and ALS, demonstrated by a reduction in muscle mass and myofibers size. Conversely, dystrophic mice lacking HDAC4 in skeletal muscle show an increased number of necrotic myofibers and run less efficiently than mdx mice. The aggravation of the dystrophic phenotype may be partially due to the impairment in skeletal muscle regeneration observed in mice lacking HDAC4 in skeletal muscle. Our results indi-cate that HDAC4 is necessary for maintaining skeletal muscle homeostasis and function. Current studies aim to investigate the molecular mechanisms underlying the role of HDAC4 in skeletal mus-cle maintenance in response to cancer cachexia, ALS or muscular dystrophy

    HDAC4 is necessary for satellite cell differentiation and muscle regeneration

    Get PDF
    In response to injury, skeletal muscle exhibits high capacity to regenerate and epigenetics controls multiple steps of this process (Giordani et al., 2013). It has been demonstrated in vitro that completion of muscle differentiation requires shuttling of histone deacetylase 4 (HDAC4), a member of class IIa HDACs, from the nucleus to the cytoplasm and consequent activation of MEF2-dependent differentiation genes (McKinsey et al., 2000). In vivo, HDAC4 expression is up-regulated in skeletal muscle upon injury, suggesting a role for this protein in muscle regeneratio

    Long-term safety and effectiveness of canakinumab therapy in patients with cryopyrin-associated periodic syndrome: results from the ÎČ-Confident Registry.

    Get PDF
    OBJECTIVE: To report the long-term safety and effectiveness of canakinumab, a fully human anti-interleukin 1ÎČ monoclonal antibody, in patients with cryopyrin-associated periodic syndromes (CAPS), including familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS) and neonatal-onset multisystem inflammatory disease (NOMID), in a real-world setting. METHODS: From December 2009 to December 2015, the ÎČ-Confident Registry prospectively enrolled patients with CAPS and non-CAPS conditions who received canakinumab per routine care and were prospectively followed for up to 6 years. The registry protocol did not mandate specific visits or procedures; however, all observed adverse events (AEs) and serious adverse events (SAEs) had to be recorded. Canakinumab effectiveness was evaluated by Physician's Global Assessment (PGA). RESULTS: Of 288 patients enrolled, 3 were excluded due to missing informed consent. Among the remaining 285 patients, 243 (85.3%) were patients with CAPS and 42 (14.7%) had atypical CAPS (6.3%) or other conditions (8.4%). The median age was 26.6 years. Based on PGA, 58 of 123 (47.2%) patients with CAPS had no disease activity at 48 months, and 65 of 123 (52.8%) experienced mild/moderate disease activity at 48 months. Among CAPS phenotypes, AE incidence rates per 100 patient-years were lowest for FCAS (73.1; 95% CI 60.3 to 87.8) compared with those with MWS (105.0; 95% CI 97.2 to 113.2) or NOMID (104.6; 95% CI 86.6 to 125.2). One hundred twenty-eight SAEs were reported in 68 patients with CAPS (incidence rate/100 patient-years, 14.0; 95% CI 11.6 to 16.6). One death (metastatic rectal adenocarcinoma in a patient with MWS) was reported. CONCLUSIONS: The response to canakinumab was sustained for up to 6 years. Canakinumab demonstrated a favourable safety profile over long-term treatment in patients with CAPS. TRIAL REGISTRATION NUMBER: NCT01213641

    Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane

    Get PDF
    Planck is a European Space Agency (ESA) satellite, launched in May 2009, which will map the cosmic microwave background anisotropies in intensity and polarisation with unprecedented detail and sensitivity. It will also provide full-sky maps of astrophysical foregrounds. An accurate knowledge of the telescope beam patterns is an essential element for a correct analysis of the acquired astrophysical data. We present a detailed description of the optical design of the High Frequency Instrument (HFI) together with some of the optical performances measured during the calibration campaigns. We report on the evolution of the knowledge of the pre-launch HFI beam patterns when coupled to ideal telescope elements, and on their significance for the HFI data analysis procedure

    SOLE Project – Demonstration of a Multistatic and Multiband Coherent Radar Network

    Get PDF
    The aim of the NATO-SPS SOLE project is demonstrating the feasibility and the high performance of a radar network thanks to photonics. Indeed, the coherence offered by photonics makes the proposed distributed radar system capable of an efficient implementation of MIMO processing and ISAR imaging, enhancing the performance in terms of resolution and precision. The advantage of a fully coherent, multistatic radar system here is experimentally proven by a 5-time cross-range resolution enhancement thanks to MIMO processing, and in an efficient focusing in ISAR imaging

    GATA transcription factors drive initial Xist upregulation after fertilization through direct activation of a distal enhancer element

    Get PDF
    To ensure dosage compensation for X-linked genes between the sexes, one X chromosome is silenced during early embryonic development of female mammals. This process of X-chromosome inactivation (XCI) is initiated through upregulation of the RNA Xist from one X chromosome shortly after fertilization. Xist then mediates chromosome-wide gene silencing in cis and remains expressed in all cell types except the germ line and the pluripotent state, where XCI is reversed. The factors that drive Xist upregulation and thereby initiate XCI remain however unknown. We identify GATA transcription factors as potent Xist activators and demonstrate that they are essential for the activation of Xist in mice following fertilization. Through a pooled CRISPR activation screen we find that GATA1 can drive ectopic Xist expression in murine embryonic stem cells (mESCs). We demonstrate that all GATA factors can activate Xist directly via a GATA-responsive regulatory element (RE79) positioned 100 kb upstream of the Xist promoter. Additionally, GATA factors are essential for the induction of XCI in mouse preimplantation embryos, as simultaneous deletion of three members of the GATA family (GATA1/4/6) in mouse zygotes effectively prevents Xist upregulation. Thus, initiation of XCI and possibly its maintenance in distinct lineages of the preimplantation embryo is ensured by the combined activity of different GATA family members, and the absence of GATA factors in the pluripotent state likely contributes to X reactivation. We thus describe a form of regulation in which the combined action of numerous tissue-specific factors can achieve near-ubiquitous expression of a target gene
    • 

    corecore